mirror of
https://github.com/msberends/AMR.git
synced 2025-07-13 01:12:08 +02:00
new, automated website
This commit is contained in:
25
man/pca.Rd
25
man/pca.Rd
@ -59,19 +59,6 @@ The \code{\link[=pca]{pca()}} function takes a \link{data.frame} as input and pe
|
||||
|
||||
The result of the \code{\link[=pca]{pca()}} function is a \link{prcomp} object, with an additional attribute \code{non_numeric_cols} which is a vector with the column names of all columns that do not contain \link{numeric} values. These are probably the groups and labels, and will be used by \code{\link[=ggplot_pca]{ggplot_pca()}}.
|
||||
}
|
||||
\section{Stable Lifecycle}{
|
||||
|
||||
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:"5"} \cr}
|
||||
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
|
||||
|
||||
If the unlying code needs breaking changes, they will occur gradually. For example, an argument will be deprecated and first continue to work, but will emit a message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
|
||||
}
|
||||
|
||||
\section{Read more on Our Website!}{
|
||||
|
||||
On our website \url{https://msberends.github.io/AMR/} you can find \href{https://msberends.github.io/AMR/articles/AMR.html}{a comprehensive tutorial} about how to conduct AMR data analysis, the \href{https://msberends.github.io/AMR/reference/}{complete documentation of all functions} and \href{https://msberends.github.io/AMR/articles/WHONET.html}{an example analysis using WHONET data}.
|
||||
}
|
||||
|
||||
\examples{
|
||||
# `example_isolates` is a data set available in the AMR package.
|
||||
# See ?example_isolates.
|
||||
@ -82,6 +69,7 @@ if (require("dplyr")) {
|
||||
resistance_data <- example_isolates \%>\%
|
||||
group_by(order = mo_order(mo), # group on anything, like order
|
||||
genus = mo_genus(mo)) \%>\% # and genus as we do here;
|
||||
filter(n() >= 30) \%>\% # filter on only 30 results per group
|
||||
summarise_if(is.rsi, resistance) # then get resistance of all drugs
|
||||
|
||||
# now conduct PCA for certain antimicrobial agents
|
||||
@ -90,8 +78,17 @@ if (require("dplyr")) {
|
||||
|
||||
pca_result
|
||||
summary(pca_result)
|
||||
|
||||
# old base R plotting method:
|
||||
biplot(pca_result)
|
||||
ggplot_pca(pca_result) # a new and convenient plot function
|
||||
# new ggplot2 plotting method using this package:
|
||||
ggplot_pca(pca_result)
|
||||
|
||||
if (require("ggplot2")) {
|
||||
ggplot_pca(pca_result) +
|
||||
scale_colour_viridis_d() +
|
||||
labs(title = "Title here")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user