1
0
mirror of https://github.com/msberends/AMR.git synced 2025-09-06 04:09:39 +02:00

Replace RSI with SIR

This commit is contained in:
Dr. Matthijs Berends
2023-01-21 23:47:20 +01:00
committed by GitHub
parent 24b12024ce
commit 98e62c9af2
127 changed files with 1746 additions and 1648 deletions

View File

@@ -10,7 +10,7 @@
\alias{count_SI}
\alias{count_S}
\alias{count_all}
\alias{n_rsi}
\alias{n_sir}
\alias{count_df}
\title{Count Available Isolates}
\usage{
@@ -30,7 +30,7 @@ count_S(..., only_all_tested = FALSE)
count_all(..., only_all_tested = FALSE)
n_rsi(..., only_all_tested = FALSE)
n_sir(..., only_all_tested = FALSE)
count_df(
data,
@@ -40,11 +40,11 @@ count_df(
)
}
\arguments{
\item{...}{one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link[=as.rsi]{as.rsi()}} if needed.}
\item{...}{one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link[=as.sir]{as.sir()}} if needed.}
\item{only_all_tested}{(for combination therapies, i.e. using more than one variable for \code{...}): a \link{logical} to indicate that isolates must be tested for all antibiotics, see section \emph{Combination Therapy} below}
\item{data}{a \link{data.frame} containing columns with class \code{\link{rsi}} (see \code{\link[=as.rsi]{as.rsi()}})}
\item{data}{a \link{data.frame} containing columns with class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})}
\item{translate_ab}{a column name of the \link{antibiotics} data set to translate the antibiotic abbreviations to, using \code{\link[=ab_property]{ab_property()}}}
@@ -65,20 +65,23 @@ These functions are meant to count isolates. Use the \code{\link[=resistance]{re
The function \code{\link[=count_resistant]{count_resistant()}} is equal to the function \code{\link[=count_R]{count_R()}}. The function \code{\link[=count_susceptible]{count_susceptible()}} is equal to the function \code{\link[=count_SI]{count_SI()}}.
The function \code{\link[=n_rsi]{n_rsi()}} is an alias of \code{\link[=count_all]{count_all()}}. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to \code{n_distinct()}. Their function is equal to \code{count_susceptible(...) + count_resistant(...)}.
The function \code{\link[=n_sir]{n_sir()}} is an alias of \code{\link[=count_all]{count_all()}}. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to \code{n_distinct()}. Their function is equal to \code{count_susceptible(...) + count_resistant(...)}.
The function \code{\link[=count_df]{count_df()}} takes any variable from \code{data} that has an \code{\link{rsi}} class (created with \code{\link[=as.rsi]{as.rsi()}}) and counts the number of S's, I's and R's. It also supports grouped variables. The function \code{\link[=rsi_df]{rsi_df()}} works exactly like \code{\link[=count_df]{count_df()}}, but adds the percentage of S, I and R.
The function \code{\link[=count_df]{count_df()}} takes any variable from \code{data} that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) and counts the number of S's, I's and R's. It also supports grouped variables. The function \code{\link[=sir_df]{sir_df()}} works exactly like \code{\link[=count_df]{count_df()}}, but adds the percentage of S, I and R.
}
\section{Interpretation of R and S/I}{
\section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories R and S/I as shown below (\url{https://www.eucast.org/newsiandr/}).
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}):
\itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.
\item \strong{I - Susceptible, increased exposure} \emph{\cr
A microorganism is categorised as "Susceptible, Increased exposure}" when there is a high likelihood of therapeutic success because exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection.
\item \strong{R = Resistant}\cr
A microorganism is categorised as \emph{Resistant} when there is a high likelihood of therapeutic failure even when there is increased exposure. Exposure is a function of how the mode of administration, dose, dosing interval, infusion time, as well as distribution and excretion of the antimicrobial agent will influence the infecting organism at the site of infection.
\item \strong{S = Susceptible}\cr
A microorganism is categorised as \emph{Susceptible, standard dosing regimen}, when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.
\item \strong{I = Susceptible, Increased exposure}\cr
A microorganism is categorised as \emph{Susceptible, Increased exposure} when there is a high likelihood of therapeutic success because exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection.
A microorganism is categorised as "Resistant" when there is a high likelihood of therapeutic failure even when there is increased exposure.
\itemize{
\item \emph{Exposure} is a function of how the mode of administration, dose, dosing interval, infusion time, as well as distribution and excretion of the antimicrobial agent will influence the infecting organism at the site of infection.
}
}
This AMR package honours this insight. Use \code{\link[=susceptibility]{susceptibility()}} (equal to \code{\link[=proportion_SI]{proportion_SI()}}) to determine antimicrobial susceptibility and \code{\link[=count_susceptible]{count_susceptible()}} (equal to \code{\link[=count_SI]{count_SI()}}) to count susceptible isolates.
@@ -139,14 +142,14 @@ count_R(example_isolates$AMX)
# Count all available isolates
count_all(example_isolates$AMX)
n_rsi(example_isolates$AMX)
n_sir(example_isolates$AMX)
# n_rsi() is an alias of count_all().
# n_sir() is an alias of count_all().
# Since it counts all available isolates, you can
# calculate back to count e.g. susceptible isolates.
# These results are the same:
count_susceptible(example_isolates$AMX)
susceptibility(example_isolates$AMX) * n_rsi(example_isolates$AMX)
susceptibility(example_isolates$AMX) * n_sir(example_isolates$AMX)
# dplyr -------------------------------------------------------------
\donttest{
@@ -158,7 +161,7 @@ if (require("dplyr")) {
I = count_I(CIP),
S = count_S(CIP),
n1 = count_all(CIP), # the actual total; sum of all three
n2 = n_rsi(CIP), # same - analogous to n_distinct
n2 = n_sir(CIP), # same - analogous to n_distinct
total = n()
) # NOT the number of tested isolates!
@@ -166,7 +169,7 @@ if (require("dplyr")) {
# (i.e., in this data set columns GEN, TOB, AMK, KAN)
example_isolates \%>\%
group_by(ward) \%>\%
summarise(across(aminoglycosides(), n_rsi))
summarise(across(aminoglycosides(), n_sir))
# Count co-resistance between amoxicillin/clav acid and gentamicin,
# so we can see that combination therapy does a lot more than mono therapy.