mirror of
https://github.com/msberends/AMR.git
synced 2025-07-21 10:53:18 +02:00
use dplyr where available, new antibiogram()
for WISCA, fixed Salmonella Typhi/Paratyphi
This commit is contained in:
@ -27,7 +27,7 @@
|
||||
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
||||
# ==================================================================== #
|
||||
|
||||
#' Calculate Microbial Resistance
|
||||
#' Calculate Antimicrobial Resistance
|
||||
#'
|
||||
#' @description These functions can be used to calculate the (co-)resistance or susceptibility of microbial isolates (i.e. percentage of S, SI, I, IR or R). All functions support quasiquotation with pipes, can be used in `summarise()` from the `dplyr` package and also support grouped variables, see *Examples*.
|
||||
#'
|
||||
@ -49,7 +49,7 @@
|
||||
#'
|
||||
#' Use [sir_confidence_interval()] to calculate the confidence interval, which relies on [binom.test()], i.e., the Clopper-Pearson method. This function returns a vector of length 2 at default for antimicrobial *resistance*. Change the `side` argument to "left"/"min" or "right"/"max" to return a single value, and change the `ab_result` argument to e.g. `c("S", "I")` to test for antimicrobial *susceptibility*, see Examples.
|
||||
#'
|
||||
#' **Remember that you should filter your data to let it contain only first isolates!** This is needed to exclude duplicates and to reduce selection bias. Use [first_isolate()] to determine them in your data set.
|
||||
#' **Remember that you should filter your data to let it contain only first isolates!** This is needed to exclude duplicates and to reduce selection bias. Use [first_isolate()] to determine them in your data set with one of the four available algorithms.
|
||||
#'
|
||||
#' These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the [`count()`][AMR::count()] functions to count isolates. The function [susceptibility()] is essentially equal to `count_susceptible() / count_all()`. *Low counts can influence the outcome - the `proportion` functions may camouflage this, since they only return the proportion (albeit being dependent on the `minimum` argument).*
|
||||
#'
|
||||
@ -77,11 +77,14 @@
|
||||
#' ```
|
||||
#'
|
||||
#' Please note that, in combination therapies, for `only_all_tested = TRUE` applies that:
|
||||
#'
|
||||
#' ```
|
||||
#' count_S() + count_I() + count_R() = count_all()
|
||||
#' proportion_S() + proportion_I() + proportion_R() = 1
|
||||
#' ```
|
||||
#'
|
||||
#' and that, in combination therapies, for `only_all_tested = FALSE` applies that:
|
||||
#'
|
||||
#' ```
|
||||
#' count_S() + count_I() + count_R() >= count_all()
|
||||
#' proportion_S() + proportion_I() + proportion_R() >= 1
|
||||
@ -98,7 +101,8 @@
|
||||
#' @examples
|
||||
#' # example_isolates is a data set available in the AMR package.
|
||||
#' # run ?example_isolates for more info.
|
||||
#'
|
||||
#' example_isolates
|
||||
#'
|
||||
#' # base R ------------------------------------------------------------
|
||||
#' # determines %R
|
||||
#' resistance(example_isolates$AMX)
|
||||
|
Reference in New Issue
Block a user