mirror of
https://github.com/msberends/AMR.git
synced 2024-12-25 08:06:12 +01:00
unit tests
This commit is contained in:
parent
77d9cf1936
commit
a0ee86536a
3
.github/workflows/check-current.yaml
vendored
3
.github/workflows/check-current.yaml
vendored
@ -58,6 +58,9 @@ jobs:
|
||||
- {os: ubuntu-latest, r: 'release', allowfail: false}
|
||||
- {os: windows-latest, r: 'devel', allowfail: false}
|
||||
- {os: windows-latest, r: 'release', allowfail: false}
|
||||
- {os: macOS-latest, r: '3.6', allowfail: false}
|
||||
- {os: ubuntu-latest, r: '3.6', allowfail: false}
|
||||
- {os: windows-latest, r: '3.6', allowfail: false}
|
||||
|
||||
env:
|
||||
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
1
.github/workflows/check-old.yaml
vendored
1
.github/workflows/check-old.yaml
vendored
@ -59,6 +59,7 @@ jobs:
|
||||
- {os: ubuntu-22.04, r: '4.0', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
|
||||
- {os: ubuntu-22.04, r: '3.6', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
|
||||
# R 3.5 returns a strange GC error when running examples, omit the checks for that
|
||||
# - {os: ubuntu-22.04, r: '3.5', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
|
||||
- {os: ubuntu-22.04, r: '3.4', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
|
||||
- {os: ubuntu-22.04, r: '3.3', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
|
||||
- {os: ubuntu-22.04, r: '3.2', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
|
||||
|
@ -1,6 +1,6 @@
|
||||
Package: AMR
|
||||
Version: 1.8.2.9076
|
||||
Date: 2022-12-30
|
||||
Version: 1.8.2.9077
|
||||
Date: 2023-01-05
|
||||
Title: Antimicrobial Resistance Data Analysis
|
||||
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
|
||||
data analysis and to work with microbial and antimicrobial properties by
|
||||
|
2
NEWS.md
2
NEWS.md
@ -1,4 +1,4 @@
|
||||
# 1.8.2.9076
|
||||
# 1.8.2.9077
|
||||
|
||||
*(this beta version will eventually become v2.0! We're happy to reach a new major milestone soon!)*
|
||||
|
||||
|
@ -966,7 +966,7 @@ unique_call_id <- function(entire_session = FALSE, match_fn = NULL) {
|
||||
# and relevant system call (where 'match_fn' is being called in)
|
||||
calls <- sys.calls()
|
||||
in_test <- any(as.character(calls[[1]]) %like_case% "run_test_dir|run_test_file|test_all|tinytest|test_package|testthat", na.rm = TRUE)
|
||||
if (!isTRUE(in_test)) {
|
||||
if (!isTRUE(in_test) && !is.null(match_fn)) {
|
||||
for (i in seq_len(length(calls))) {
|
||||
call_clean <- gsub("[^a-zA-Z0-9_().-]", "", as.character(calls[[i]]), perl = TRUE)
|
||||
if (match_fn %in% call_clean || any(call_clean %like% paste0(match_fn, "\\("), na.rm = TRUE)) {
|
||||
@ -1262,6 +1262,7 @@ create_pillar_column <- function(x, ...) {
|
||||
|
||||
as_original_data_class <- function(df, old_class = NULL) {
|
||||
if ("tbl_df" %in% old_class && pkg_is_available("tibble", also_load = FALSE)) {
|
||||
# this will then also remove groups
|
||||
fn <- import_fn("as_tibble", "tibble")
|
||||
} else if ("tbl_ts" %in% old_class && pkg_is_available("tsibble", also_load = FALSE)) {
|
||||
fn <- import_fn("as_tsibble", "tsibble")
|
||||
@ -1270,7 +1271,7 @@ as_original_data_class <- function(df, old_class = NULL) {
|
||||
} else if ("tabyl" %in% old_class && pkg_is_available("janitor", also_load = FALSE)) {
|
||||
fn <- import_fn("as_tabyl", "janitor")
|
||||
} else {
|
||||
fn <- base::as.data.frame
|
||||
fn <- function(x) base::as.data.frame(df, stringsAsFactors = FALSE)
|
||||
}
|
||||
fn(df)
|
||||
}
|
||||
|
@ -36,7 +36,7 @@
|
||||
#' @param language language of the returned text, defaults to system language (see [get_AMR_locale()]) and can also be set with `getOption("AMR_locale")`. Use `language = NULL` or `language = ""` to prevent translation.
|
||||
#' @param administration way of administration, either `"oral"` or `"iv"`
|
||||
#' @param open browse the URL using [utils::browseURL()]
|
||||
#' @param ... in case of [set_ab_names()] and `data` is a [data.frame]: variables to select (supports tidy selection such as `column1:column4`), otherwise other arguments passed on to [as.ab()]
|
||||
#' @param ... in case of [set_ab_names()] and `data` is a [data.frame]: columns to select (supports tidy selection such as `column1:column4`), otherwise other arguments passed on to [as.ab()]
|
||||
#' @param data a [data.frame] of which the columns need to be renamed, or a [character] vector of column names
|
||||
#' @param snake_case a [logical] to indicate whether the names should be in so-called [snake case](https://en.wikipedia.org/wiki/Snake_case): in lower case and all spaces/slashes replaced with an underscore (`_`)
|
||||
#' @param only_first a [logical] to indicate whether only the first ATC code must be returned, with giving preference to J0-codes (i.e., the antimicrobial drug group)
|
||||
|
@ -161,7 +161,7 @@ bug_drug_combinations <- function(x,
|
||||
out <- run_it(x)
|
||||
}
|
||||
rownames(out) <- NULL
|
||||
out <- as_original_data_class(out, class(x.bak))
|
||||
out <- as_original_data_class(out, class(x.bak)) # will remove tibble groups
|
||||
structure(out, class = c("bug_drug_combinations", ifelse(data_has_groups, "grouped", character(0)), class(out)))
|
||||
}
|
||||
|
||||
@ -322,7 +322,7 @@ format.bug_drug_combinations <- function(x,
|
||||
}
|
||||
|
||||
rownames(y) <- NULL
|
||||
as_original_data_class(y, class(x.bak))
|
||||
as_original_data_class(y, class(x.bak)) # will remove tibble groups
|
||||
}
|
||||
|
||||
#' @method print bug_drug_combinations
|
||||
|
@ -77,7 +77,7 @@
|
||||
#'
|
||||
#' ### Using taxonomic properties in rules
|
||||
#'
|
||||
#' There is one exception in variables used for the rules: all column names of the [microorganisms] data set can also be used, but do not have to exist in the data set. These column names are: `r vector_and(colnames(microorganisms), sort = FALSE)`. Thus, this next example will work as well, despite the fact that the `df` data set does not contain a column `genus`:
|
||||
#' There is one exception in columns used for the rules: all column names of the [microorganisms] data set can also be used, but do not have to exist in the data set. These column names are: `r vector_and(colnames(microorganisms), sort = FALSE)`. Thus, this next example will work as well, despite the fact that the `df` data set does not contain a column `genus`:
|
||||
#'
|
||||
#' ```r
|
||||
#' y <- custom_eucast_rules(TZP == "S" & genus == "Klebsiella" ~ aminopenicillins == "S",
|
||||
|
@ -1035,7 +1035,7 @@ eucast_rules <- function(x,
|
||||
|
||||
# Return data set ---------------------------------------------------------
|
||||
if (isTRUE(verbose)) {
|
||||
as_original_data_class(verbose_info, old_attributes$class)
|
||||
as_original_data_class(verbose_info, old_attributes$class) # will remove tibble groups
|
||||
} else {
|
||||
# x was analysed with only unique rows, so join everything together again
|
||||
x <- x[, c(cols_ab, ".rowid"), drop = FALSE]
|
||||
@ -1043,8 +1043,9 @@ eucast_rules <- function(x,
|
||||
x.bak <- x.bak %pm>%
|
||||
pm_left_join(x, by = ".rowid")
|
||||
x.bak <- x.bak[, old_cols, drop = FALSE]
|
||||
# reset original attributes, no need for as_original_data_class() here
|
||||
# reset original attributes
|
||||
attributes(x.bak) <- old_attributes
|
||||
x.bak <- as_original_data_class(x.bak, old_class = class(x.bak)) # will remove tibble groups
|
||||
x.bak
|
||||
}
|
||||
}
|
||||
|
@ -185,5 +185,5 @@ join_microorganisms <- function(type, x, by, suffix, ...) {
|
||||
warning_("in `", type, "_microorganisms()`: the newly joined data set contains ", nrow(joined) - nrow(x), " rows more than the number of rows of `x`.")
|
||||
}
|
||||
|
||||
as_original_data_class(joined, class(x.bak))
|
||||
as_original_data_class(joined, class(x.bak)) # will remove tibble groups
|
||||
}
|
||||
|
@ -30,30 +30,40 @@
|
||||
#' Calculate the Mean AMR Distance
|
||||
#'
|
||||
#' Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand.
|
||||
#' @param x a vector of class [rsi][as.rsi()], [rsi][as.rsi()] or [rsi][as.rsi()], or a [data.frame] containing columns of any of these classes
|
||||
#' @param x a vector of class [rsi][as.rsi()], [mic][as.mic()] or [disk][as.disk()], or a [data.frame] containing columns of any of these classes
|
||||
#' @param ... variables to select (supports [tidyselect language][tidyselect::language] such as `column1:column4` and `where(is.mic)`, and can thus also be [antibiotic selectors][ab_selector()]
|
||||
#' @param combine_SI a [logical] to indicate whether all values of S and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant), defaults to `TRUE`
|
||||
#' @details The mean AMR distance is a normalised numeric value to compare AMR test results and can help to identify similar isolates, without comparing antibiograms by hand. For common numeric data this distance is equal to [Z scores](https://en.wikipedia.org/wiki/Standard_score) (the number of standard deviations from the mean).
|
||||
#' @details The mean AMR distance is effectively [the Z-score](https://en.wikipedia.org/wiki/Standard_score); a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand.
|
||||
#'
|
||||
#' MIC values (see [as.mic()]) are transformed with [log2()] first; their distance is calculated as `(log2(x) - mean(log2(x))) / sd(log2(x))`.
|
||||
#' MIC values (see [as.mic()]) are transformed with [log2()] first; their distance is thus calculated as `(log2(x) - mean(log2(x))) / sd(log2(x))`.
|
||||
#'
|
||||
#' R/SI values (see [as.rsi()]) are transformed using `"S"` = 1, `"I"` = 2, and `"R"` = 3. If `combine_SI` is `TRUE` (default), the `"I"` will be considered to be 1.
|
||||
#'
|
||||
#' For data sets, the mean AMR distance will be calculated per variable, after which the mean of all columns will returned per row (using [rowMeans()]), see *Examples*.
|
||||
#' For data sets, the mean AMR distance will be calculated per column, after which the mean per row will be returned, see *Examples*.
|
||||
#'
|
||||
#' Use [amr_distance_from_row()] to subtract distances from the distance of one row, see *Examples*.
|
||||
#' @section Interpretation:
|
||||
#' Isolates with distances less than 0.01 difference from each other should be considered similar. Differences lower than 0.025 should be considered suspicious.
|
||||
#' @export
|
||||
#' @examples
|
||||
#' x <- random_mic(10)
|
||||
#' x
|
||||
#' mean_amr_distance(x)
|
||||
#' rsi <- random_rsi(10)
|
||||
#' rsi
|
||||
#' mean_amr_distance(rsi)
|
||||
#'
|
||||
#' mic <- random_mic(10)
|
||||
#' mic
|
||||
#' mean_amr_distance(mic)
|
||||
#' # equal to the Z-score of their log2:
|
||||
#' (log2(mic) - mean(log2(mic))) / sd(log2(mic))
|
||||
#'
|
||||
#' disk <- random_disk(10)
|
||||
#' disk
|
||||
#' mean_amr_distance(disk)
|
||||
#'
|
||||
#' y <- data.frame(
|
||||
#' id = LETTERS[1:10],
|
||||
#' amox = random_mic(10, ab = "amox", mo = "Escherichia coli"),
|
||||
#' cipr = random_mic(10, ab = "cipr", mo = "Escherichia coli"),
|
||||
#' amox = random_rsi(10, ab = "amox", mo = "Escherichia coli"),
|
||||
#' cipr = random_disk(10, ab = "cipr", mo = "Escherichia coli"),
|
||||
#' gent = random_mic(10, ab = "gent", mo = "Escherichia coli"),
|
||||
#' tobr = random_mic(10, ab = "tobr", mo = "Escherichia coli")
|
||||
#' )
|
||||
@ -65,7 +75,7 @@
|
||||
#' if (require("dplyr")) {
|
||||
#' y %>%
|
||||
#' mutate(
|
||||
#' amr_distance = mean_amr_distance(., where(is.mic)),
|
||||
#' amr_distance = mean_amr_distance(y),
|
||||
#' check_id_C = amr_distance_from_row(amr_distance, id == "C")
|
||||
#' ) %>%
|
||||
#' arrange(check_id_C)
|
||||
@ -76,8 +86,8 @@
|
||||
#' filter(mo_genus() == "Enterococcus" & mo_species() != "") %>%
|
||||
#' select(mo, TCY, carbapenems()) %>%
|
||||
#' group_by(mo) %>%
|
||||
#' mutate(d = mean_amr_distance(., where(is.rsi))) %>%
|
||||
#' arrange(mo, d)
|
||||
#' mutate(dist = mean_amr_distance(.)) %>%
|
||||
#' arrange(mo, dist)
|
||||
#' }
|
||||
mean_amr_distance <- function(x, ...) {
|
||||
UseMethod("mean_amr_distance")
|
||||
@ -87,6 +97,7 @@ mean_amr_distance <- function(x, ...) {
|
||||
#' @export
|
||||
mean_amr_distance.default <- function(x, ...) {
|
||||
x <- as.double(x)
|
||||
# calculate z-score
|
||||
(x - mean(x, na.rm = TRUE)) / stats::sd(x, na.rm = TRUE)
|
||||
}
|
||||
|
||||
@ -120,6 +131,7 @@ mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
|
||||
if (is_null_or_grouped_tbl(df)) {
|
||||
df <- get_current_data("x", -2)
|
||||
}
|
||||
df <- as.data.frame(df, stringsAsFactors = FALSE)
|
||||
if (tryCatch(length(list(...)) > 0, error = function(e) TRUE)) {
|
||||
out <- tryCatch(suppressWarnings(c(...)), error = function(e) NULL)
|
||||
if (!is.null(out)) {
|
||||
@ -128,13 +140,18 @@ mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
|
||||
df <- pm_select(df, ...)
|
||||
}
|
||||
}
|
||||
df_classes <- colnames(df)[vapply(FUN.VALUE = logical(1), df, function(x) is.disk(x) | is.mic(x) | is.disk(x), USE.NAMES = FALSE)]
|
||||
df_antibiotics <- unname(get_column_abx(df, info = FALSE))
|
||||
df <- df[, colnames(df)[colnames(df) %in% union(df_classes, df_antibiotics)], drop = FALSE]
|
||||
|
||||
stop_if(ncol(df) < 2,
|
||||
"data set must contain at least two variables",
|
||||
call = -2
|
||||
)
|
||||
if (message_not_thrown_before("mean_amr_distance", "groups")) {
|
||||
message_("Calculating mean AMR distance based on columns ", vector_and(colnames(df)))
|
||||
message_("Calculating mean AMR distance based on columns ", vector_and(colnames(df), sort = FALSE))
|
||||
}
|
||||
|
||||
res <- vapply(
|
||||
FUN.VALUE = double(nrow(df)),
|
||||
df,
|
||||
@ -149,7 +166,7 @@ mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
|
||||
}
|
||||
}
|
||||
res <- rowMeans(res, na.rm = TRUE)
|
||||
res[is.infinite(res)] <- 0
|
||||
res[is.infinite(res) | is.nan(res)] <- 0
|
||||
res
|
||||
}
|
||||
|
||||
|
@ -274,7 +274,7 @@ resistance_predict <- function(x,
|
||||
df_prediction$value <- ifelse(df_prediction$value > 1, 1, pmax(df_prediction$value, 0))
|
||||
df_prediction <- df_prediction[order(df_prediction$year), , drop = FALSE]
|
||||
|
||||
out <- as_original_data_class(df_prediction, class(x.bak))
|
||||
out <- as_original_data_class(df_prediction, class(x.bak)) # will remove tibble groups
|
||||
structure(out,
|
||||
class = c("resistance_predict", class(out)),
|
||||
I_as_S = I_as_S,
|
||||
|
@ -371,6 +371,6 @@ rsi_calc_df <- function(type, # "proportion", "count" or "both"
|
||||
}
|
||||
|
||||
rownames(out) <- NULL
|
||||
out <- as_original_data_class(out, class(data.bak))
|
||||
out <- as_original_data_class(out, class(data.bak)) # will remove tibble groups
|
||||
structure(out, class = c("rsi_df", class(out)))
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user