1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 12:31:58 +02:00

(v0.9.0.9016) Support SNOMED codes

This commit is contained in:
2020-01-27 19:14:23 +01:00
parent 42b079cdb7
commit a13c62e6e8
31 changed files with 456 additions and 342 deletions

View File

@ -69,7 +69,7 @@
#'
#' A data set containing the microbial taxonomy of six kingdoms from the Catalogue of Life. MO codes can be looked up using [as.mo()].
#' @inheritSection catalogue_of_life Catalogue of Life
#' @format A [`data.frame`] with 69,447 observations and 16 variables:
#' @format A [`data.frame`] with 69,447 observations and 17 variables:
#' - `mo`\cr ID of microorganism as used by this package
#' - `col_id`\cr Catalogue of Life ID
#' - `fullname`\cr Full name, like `"Escherichia coli"`
@ -79,6 +79,7 @@
#' - `species_id`\cr ID of the species as used by the Catalogue of Life
#' - `source`\cr Either "CoL", "DSMZ" (see Source) or "manually added"
#' - `prevalence`\cr Prevalence of the microorganism, see [as.mo()]
#' - `snomed`\cr SNOMED code of the microorganism. Use [mo_snomed()] to retrieve it quickly, see [mo_property()].
#' @details Manually added were:
#' - 11 entries of *Streptococcus* (beta-haemolytic: groups A, B, C, D, F, G, H, K and unspecified; other: viridans, milleri)
#' - 2 entries of *Staphylococcus* (coagulase-negative (CoNS) and coagulase-positive (CoPS))
@ -145,7 +146,7 @@ catalogue_of_life <- list(
#' - `gender`\cr gender of the patient
#' - `patient_id`\cr ID of the patient
#' - `mo`\cr ID of microorganism created with [as.mo()], see also [microorganisms]
#' - `PEN:RIF`\cr 40 different antibiotics with class [`rsi`] (see [as.rsi()]); these column names occur in [antibiotics] data set and can be translated with [ab_name()]
#' - `PEN:RIF`\cr 40 different antibiotics with class [`rsi`] (see [as.rsi()]); these column names occur in the [antibiotics] data set and can be translated with [ab_name()]
#' @inheritSection AMR Read more on our website!
"example_isolates"
@ -182,9 +183,9 @@ catalogue_of_life <- list(
#' @inheritSection AMR Read more on our website!
"WHONET"
#' Data set for RSI interpretation
#' Data set for R/SI interpretation
#'
#' Data set to interpret MIC and disk diffusion to RSI values. Included guidelines are CLSI (2011-2019) and EUCAST (2011-2019). Use [as.rsi()] to transform MICs or disks measurements to RSI values.
#' Data set to interpret MIC and disk diffusion to R/SI values. Included guidelines are CLSI (2011-2019) and EUCAST (2011-2019). Use [as.rsi()] to transform MICs or disks measurements to R/SI values.
#' @format A [`data.frame`] with 13,975 observations and 9 variables:
#' - `guideline`\cr Name of the guideline
#' - `method`\cr Either "MIC" or "DISK"
@ -195,32 +196,7 @@ catalogue_of_life <- list(
#' - `disk_dose`\cr Dose of the used disk diffusion method
#' - `breakpoint_S`\cr Lowest MIC value or highest number of millimeters that leads to "S"
#' - `breakpoint_R`\cr Highest MIC value or lowest number of millimeters that leads to "R"
#' @details The repository of this `AMR` package contains a file comprising this exact data set: [https://gitlab.com/msberends/AMR/blob/master/data-raw/rsi_translation.txt]. This file **allows for machine reading EUCAST and CLSI guidelines**, which is almost impossible with the Excel and PDF files distributed by EUCAST and CLSI. This file is updated automatically.
#' @inheritSection AMR Read more on our website!
"rsi_translation"
# transforms data set to data.frame with only ASCII values, to comply with CRAN policies
dataset_UTF8_to_ASCII <- function(df) {
trans <- function(vect) {
iconv(vect, from = "UTF-8", to = "ASCII//TRANSLIT")
}
df <- as.data.frame(df, stringsAsFactors = FALSE)
for (i in seq_len(NCOL(df))) {
col <- df[, i]
if (is.list(col)) {
for (j in seq_len(length(col))) {
col[[j]] <- trans(col[[j]])
}
df[, i] <- list(col)
} else {
if (is.factor(col)) {
levels(col) <- trans(levels(col))
} else if (is.character(col)) {
col <- trans(col)
} else {
col
}
df[, i] <- col
}
}
df
}