1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 21:22:01 +02:00

(v1.4.0.9025) is_new_episode()

This commit is contained in:
2020-11-23 21:50:27 +01:00
parent 363218da7e
commit b045b571a6
29 changed files with 706 additions and 366 deletions

View File

@ -204,11 +204,5 @@ test_that("first isolates work", {
expect_true(all(example_isolates %pm>%
pm_distinct(mo, .keep_all = TRUE) %pm>%
first_isolate() == TRUE))
library(dplyr)
# is_new_episode
old <- example_isolates %>% mutate(out = first_isolate(., include_unknown = TRUE))
new <- example_isolates %>% group_by(mo) %>% mutate(out = is_new_episode())
expect_identical(which(old$out), which(new$out))
})

View File

@ -0,0 +1,55 @@
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis for R #
# #
# SOURCE #
# https://github.com/msberends/AMR #
# #
# LICENCE #
# (c) 2018-2020 Berends MS, Luz CF et al. #
# Developed at the University of Groningen, the Netherlands, in #
# collaboration with non-profit organisations Certe Medical #
# Diagnostics & Advice, and University Medical Center Groningen. #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR analysis: https://msberends.github.io/AMR/ #
# ==================================================================== #
context("is_new_episode.R")
test_that("new episodes work", {
skip_on_cran()
test_df <- rbind(
data.frame(
date = as.Date(c("2015-01-01", "2015-10-01", "2016-02-04", "2016-12-31", "2017-01-01", "2017-02-01", "2017-02-05", "2020-01-01")),
patient_id = "A"
),
data.frame(
date = as.Date(c("2015-01-01", "2016-02-01", "2016-12-31", "2017-01-01", "2017-02-03")),
patient_id = "B"
))
library(dplyr)
expect_identical(test_df %>% group_by(patient_id) %>% mutate(f = is_new_episode(date)) %>% pull(f),
c(TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE))
suppressMessages(
x <- example_isolates %>%
mutate(out = first_isolate(., include_unknown = TRUE, info = FALSE))
)
y <- example_isolates %>%
group_by(patient_id, mo) %>%
mutate(out = is_new_episode(date))
expect_identical(which(x$out), which(y$out))
})

View File

@ -31,10 +31,7 @@ test_that("`like` works", {
expect_true("test" %like% "test")
expect_false("test" %like_case% "TEST")
expect_false("test" %not_like% "test")
expect_true("test" %not_like_case% "TEST")
expect_true(as.factor("test") %like% "TEST")
expect_identical(factor(c("Test case", "Something different", "Yet another thing")) %like% c("case", "diff", "yet"),
c(TRUE, TRUE, TRUE))