our_data$bacteria<-as.mo(our_data$bacteria, info =TRUE)
-#> ℹ Retrieved values from the microorganisms.codes data set for "ESCCOL",
+#> ℹ Retrieved values from the `microorganisms.codes` data set for "ESCCOL",#> "KLEPNE", "STAAUR", and "STRPNE".#> ℹ Microorganism translation was uncertain for four microorganisms. Run
-#> mo_uncertainties() to review these uncertainties, or use
-#> add_custom_microorganisms() to add custom entries.
+#> `mo_uncertainties()` to review these uncertainties, or use
+#> `add_custom_microorganisms()` to add custom entries.
Apparently, there was some uncertainty about the translation to
taxonomic codes. Let’s check this:
mo_uncertainties()#> Matching scores are based on the resemblance between the input and the full
-#> taxonomic name, and the pathogenicity in humans. See ?mo_matching_score.
+#> taxonomic name, and the pathogenicity in humans. See `?mo_matching_score`.#> Colour keys: 0.000-0.549 0.550-0.649 0.650-0.749 0.750-1.000 #> #> --------------------------------------------------------------------------------
@@ -311,8 +311,8 @@ taxonomic codes. Let’s check this:
#> periodonticum (0.519)#> #> Only the first 10 other matches of each record are shown. Run
-#> print(mo_uncertainties(), n = ...) to view more entries, or save
-#> mo_uncertainties() to an object.
+#> `print(mo_uncertainties(), n = ...)` to view more entries, or save
+#> `mo_uncertainties()` to an object.
That’s all good.
@@ -400,9 +400,9 @@ the methods on the first_isolate
our_data<-our_data%>%mutate(first =first_isolate(info =TRUE))#> ℹ Determining first isolates using an episode length of 365 days
-#> ℹ Using column 'bacteria' as input for col_mo.
-#> ℹ Using column 'date' as input for col_date.
-#> ℹ Using column 'patient_id' as input for col_patient_id.
+#> ℹ Using column 'bacteria' as input for `col_mo`.
+#> ℹ Using column 'date' as input for `col_date`.
+#> ℹ Using column 'patient_id' as input for `col_patient_id`.#> ℹ Basing inclusion on all antimicrobial results, using a points threshold#> of 2#> => Found 2,724 'phenotype-based' first isolates (90.8% of total where a
@@ -523,7 +523,7 @@ in:
our_data_1st%>%select(date, aminoglycosides())
-#> ℹ For aminoglycosides() using column 'GEN' (gentamicin)
+#> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin)#> # A tibble: 2,724 × 2#> date GEN #> <date><sir>
@@ -541,7 +541,7 @@ in:
our_data_1st%>%select(bacteria, betalactams())
-#> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC'
+#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'#> (amoxicillin/clavulanic acid)#> # A tibble: 2,724 × 3#> bacteria AMX AMC
@@ -578,7 +578,7 @@ in:
# filtering using AB selectors is also possible:our_data_1st%>%filter(any(aminoglycosides()=="R"))
-#> ℹ For aminoglycosides() using column 'GEN' (gentamicin)
+#> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin)#> # A tibble: 981 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first#> <chr><chr><date><mo><sir><sir><sir><sir><lgl>
@@ -596,7 +596,7 @@ in:
our_data_1st%>%filter(all(betalactams()=="R"))
-#> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC'
+#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'#> (amoxicillin/clavulanic acid)#> # A tibble: 462 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first
@@ -615,7 +615,7 @@ in:
# even works in base R (since R 3.0):our_data_1st[all(betalactams()=="R"), ]
-#> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC'
+#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'#> (amoxicillin/clavulanic acid)#> # A tibble: 462 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first
@@ -697,9 +697,9 @@ previously mentioned antibiotic class selectors:
antibiogram(example_isolates, antibiotics =c(aminoglycosides(), carbapenems()))
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
@@ -828,7 +828,7 @@ language to be Spanish using the language argument:
antibiotics =aminoglycosides(), ab_transform ="name", language ="es")
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
@@ -954,9 +954,9 @@ argument must be used. This can be any column in the data, or e.g. an
antibiogram(example_isolates, antibiotics =c(aminoglycosides(), carbapenems()), syndromic_group ="ward")
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
diff --git a/articles/AMR_for_Python.html b/articles/AMR_for_Python.html
index b3b56ce36..06029925b 100644
--- a/articles/AMR_for_Python.html
+++ b/articles/AMR_for_Python.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/articles/AMR_with_tidymodels.html b/articles/AMR_with_tidymodels.html
index fa4b41157..1a36f276d 100644
--- a/articles/AMR_with_tidymodels.html
+++ b/articles/AMR_with_tidymodels.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -179,9 +179,9 @@ package.
mo =as.factor(mo_gramstain(mo)))%>%# drop NAs - the ones without a Gramstain (fungi, etc.)drop_na()
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#> ℹ For betalactams() using columns 'PEN' (benzylpenicillin), 'OXA'
+#> ℹ For `betalactams()` using columns 'PEN' (benzylpenicillin), 'OXA'#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP'#> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM'
@@ -227,9 +227,9 @@ we have with step_corr(), the necessary parameters can be
estimated from a training set using prep():
prep(resistance_recipe)
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#> ℹ For betalactams() using columns 'PEN' (benzylpenicillin), 'OXA'
+#> ℹ For `betalactams()` using columns 'PEN' (benzylpenicillin), 'OXA'#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP'#> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM'
@@ -712,7 +712,7 @@ into a structured time-series format.
.names ="res_{.col}"), .groups ="drop")%>%filter(!is.na(res_AMX)&!is.na(res_AMC)&!is.na(res_CIP))# Drop missing values
-#> ℹ Using column 'mo' as input for col_mo.
+#> ℹ Using column 'mo' as input for `col_mo`.data_time#> # A tibble: 32 × 5
diff --git a/articles/EUCAST.html b/articles/EUCAST.html
index f86226b1b..c91158d38 100644
--- a/articles/EUCAST.html
+++ b/articles/EUCAST.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/articles/PCA.html b/articles/PCA.html
index 824e8712b..d0712a321 100644
--- a/articles/PCA.html
+++ b/articles/PCA.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/articles/WHONET.html b/articles/WHONET.html
index efce4eb96..16d3e4f97 100644
--- a/articles/WHONET.html
+++ b/articles/WHONET.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/articles/WISCA.html b/articles/WISCA.html
index 45c7be18c..bbea4a53c 100644
--- a/articles/WISCA.html
+++ b/articles/WISCA.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/articles/datasets.html b/articles/datasets.html
index cc296e9a5..b5ec30173 100644
--- a/articles/datasets.html
+++ b/articles/datasets.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/articles/index.html b/articles/index.html
index cd4ad6925..81b678dc9 100644
--- a/articles/index.html
+++ b/articles/index.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/authors.html b/authors.html
index ae5832228..fa4745649 100644
--- a/authors.html
+++ b/authors.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/index.html b/index.html
index e32e27fdb..be16f6787 100644
--- a/index.html
+++ b/index.html
@@ -33,7 +33,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -503,7 +503,7 @@
install.packages("AMR", repos ="beta.amr-for-r.org")# if this does not work, try to install directly from GitHub using the 'remotes' package:
-remotes::install_github("msberends/AMR")
Fixed a bug in antibiogram() for when no antimicrobials are set
Fixed a bug in antibiogram() to allow column names containing the + character (#222)
Fixed a bug in as.ab() for antimicrobial codes with a number in it if they are preceded by a space
@@ -71,6 +71,7 @@
Fixed a bug in ggplot_sir() when using combine_SI = FALSE (#213)
Fixed all plotting to contain a separate colour for SDD (susceptible dose-dependent) (#223)
Fixed some specific Dutch translations for antimicrobials
+
Added names to age_groups() so that custom names can be given (#215)
Added note to as.sir() to make it explicit when higher-level taxonomic breakpoints are used (#218)
Updated random_mic() and random_disk() to set skewedness of the distribution and allow multiple microorganisms
diff --git a/pkgdown.yml b/pkgdown.yml
index 16449b1a7..4cc27b838 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
PCA: PCA.html
WHONET: WHONET.html
WISCA: WISCA.html
-last_built: 2025-07-17T17:15Z
+last_built: 2025-07-17T17:38Z
urls:
reference: https://amr-for-r.org/reference
article: https://amr-for-r.org/articles
diff --git a/reference/AMR-deprecated.html b/reference/AMR-deprecated.html
index 8bd23f5a0..1768a33d8 100644
--- a/reference/AMR-deprecated.html
+++ b/reference/AMR-deprecated.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/AMR-options.html b/reference/AMR-options.html
index ad5deed6b..9e8f8a781 100644
--- a/reference/AMR-options.html
+++ b/reference/AMR-options.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/AMR.html b/reference/AMR.html
index f4d3ee29d..52d4c58c0 100644
--- a/reference/AMR.html
+++ b/reference/AMR.html
@@ -21,7 +21,7 @@ The AMR package is available in English, Arabic, Bengali, Chinese, Czech, Danish
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/WHOCC.html b/reference/WHOCC.html
index d8dfd8c92..12e3d5c49 100644
--- a/reference/WHOCC.html
+++ b/reference/WHOCC.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/WHONET.html b/reference/WHONET.html
index 7a1cf57fa..88be33efb 100644
--- a/reference/WHONET.html
+++ b/reference/WHONET.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/ab_from_text.html b/reference/ab_from_text.html
index 228f8c1db..96c8b8ab4 100644
--- a/reference/ab_from_text.html
+++ b/reference/ab_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/ab_property.html b/reference/ab_property.html
index 40fc49ced..40caab618 100644
--- a/reference/ab_property.html
+++ b/reference/ab_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/add_custom_antimicrobials.html b/reference/add_custom_antimicrobials.html
index 2b0be8a98..05d9665d6 100644
--- a/reference/add_custom_antimicrobials.html
+++ b/reference/add_custom_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -111,7 +111,7 @@
group ="Test Group"))
-#>ℹ Added one record to the internal antimicrobials data set.
+#>ℹ Added one record to the internal `antimicrobials` data set.# "testab" is now a new antibiotic:as.ab("testab")
@@ -180,7 +180,7 @@
group ="Beta-lactams/penicillins"))
-#>ℹ Added one record to the internal antimicrobials data set.
+#>ℹ Added one record to the internal `antimicrobials` data set.ab_atc("Co-fluampicil")#> [1] "J01CR50"ab_name("J01CR50")
@@ -197,7 +197,7 @@
#> random_column coflu ampicillin#> 1 some value S Rx[, betalactams()]
-#>ℹ For betalactams() using columns 'coflu' (co-fluampicil) and
+#>ℹ For `betalactams()` using columns 'coflu' (co-fluampicil) and#> 'ampicillin'#> coflu ampicillin#> 1 S R
diff --git a/reference/add_custom_microorganisms.html b/reference/add_custom_microorganisms.html
index 95777b6cc..f7db46352 100644
--- a/reference/add_custom_microorganisms.html
+++ b/reference/add_custom_microorganisms.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -109,7 +109,7 @@
species ="asburiae/cloacae"))
-#>ℹ Added Enterobacter asburiae/cloacae to the internal microorganisms data
+#>ℹ Added Enterobacter asburiae/cloacae to the internal `microorganisms` data#> set.# E. asburiae/cloacae is now a new microorganism:
@@ -204,7 +204,7 @@
SPECIES ="SPECIES"))
-#>ℹ Added Bacteroides/Parabacteroides to the internal microorganisms data
+#>ℹ Added Bacteroides/Parabacteroides to the internal `microorganisms` data#> set.mo_name("BACTEROIDES / PARABACTEROIDES")#> [1] "Bacteroides/Parabacteroides"
@@ -225,7 +225,7 @@
))#>ℹ Added Citrobacter braakii complex and Citrobacter freundii complex to the
-#> internal microorganisms data set.
+#> internal `microorganisms` data set.mo_name(c("C. freundii complex", "C. braakii complex"))#> [1] "Citrobacter freundii complex" "Citrobacter braakii complex" mo_species(c("C. freundii complex", "C. braakii complex"))
diff --git a/reference/age.html b/reference/age.html
index 86ca063e2..c10fb703e 100644
--- a/reference/age.html
+++ b/reference/age.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/age_groups.html b/reference/age_groups.html
index 611295236..8599eb91a 100644
--- a/reference/age_groups.html
+++ b/reference/age_groups.html
@@ -1,5 +1,5 @@
-Split Ages into Age Groups — age_groups • AMR (for R)
+Split Ages into Age Groups — age_groups • AMR (for R)Skip to contents
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -50,12 +50,13 @@
-
Split ages into age groups defined by the split argument. This allows for easier demographic (antimicrobial resistance) analysis.
+
Split ages into age groups defined by the split argument. This allows for easier demographic (antimicrobial resistance) analysis. The function returns an ordered factor.
Values to split x at - the default is age groups 0-11, 12-24, 25-54, 55-74 and 75+. See Details.
+
names
+
Optional names to be given to the various age groups.
+
+
na.rm
A logical to indicate whether missing values should be removed.
@@ -106,6 +111,10 @@ The default is to split on young children (0-11), youth (12-24), young adults (2
age_groups(ages, c(20, 50))#> [1] 0-19 0-19 0-19 50+ 20-49 50+ 50+ 20-49 20-49#> Levels: 0-19 < 20-49 < 50+
+age_groups(ages, c(20, 50), names =c("Under 20 years", "20 to 50 years", "Over 50 years"))
+#> [1] Under 20 years Under 20 years Under 20 years Over 50 years 20 to 50 years
+#> [6] Over 50 years Over 50 years 20 to 50 years 20 to 50 years
+#> Levels: Under 20 years < 20 to 50 years < Over 50 years# split into groups of ten yearsage_groups(ages, 1:10*10)
diff --git a/reference/amr-tidymodels.html b/reference/amr-tidymodels.html
index db8076baa..af358848b 100644
--- a/reference/amr-tidymodels.html
+++ b/reference/amr-tidymodels.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -121,7 +121,60 @@ may affect the computations for subsequent operations.
if(require("tidymodels")){
+
+# The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
+# Presence of ESBL genes was predicted based on raw MIC values.
+
+
+# example data set in the AMR package
+esbl_isolates
+
+# Prepare a binary outcome and convert to ordered factor
+data<-esbl_isolates%>%
+mutate(esbl =factor(esbl, levels =c(FALSE, TRUE), ordered =TRUE))
+
+# Split into training and testing sets
+split<-initial_split(data)
+training_data<-training(split)
+testing_data<-testing(split)
+
+# Create and prep a recipe with MIC log2 transformation
+mic_recipe<-recipe(esbl~., data =training_data)%>%
+
+# Optionally remove non-predictive variables
+remove_role(genus, old_role ="predictor")%>%
+
+# Apply the log2 transformation to all MIC predictors
+step_mic_log2(all_mic_predictors())%>%
+
+# And apply the preparation steps
+prep()
+
+# View prepped recipe
+mic_recipe
+
+# Apply the recipe to training and testing data
+out_training<-bake(mic_recipe, new_data =NULL)
+out_testing<-bake(mic_recipe, new_data =testing_data)
+
+# Fit a logistic regression model
+fitted<-logistic_reg(mode ="classification")%>%
+set_engine("glm")%>%
+fit(esbl~., data =out_training)
+
+# Generate predictions on the test set
+predictions<-predict(fitted, out_testing)%>%
+bind_cols(out_testing)
+
+# Evaluate predictions using standard classification metrics
+our_metrics<-metric_set(accuracy, kap, ppv, npv)
+metrics<-our_metrics(predictions, truth =esbl, estimate =.pred_class)
+
+# Show performance
+metrics
+}
+#> Loading required package: tidymodels#> ── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──#>✔broom 1.0.8 ✔rsample 1.3.0#>✔dials 1.4.0 ✔tibble 3.3.0
@@ -135,86 +188,7 @@ may affect the computations for subsequent operations.
#>✖dplyr::filter() masks stats::filter()#>✖dplyr::lag() masks stats::lag()#>✖recipes::step() masks stats::step()
-
-# The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
-# Presence of ESBL genes was predicted based on raw MIC values.
-
-
-# example data set in the AMR package
-esbl_isolates
-#># A tibble: 500 × 19
-#> esbl genus AMC AMP TZP CXM FOX CTX CAZ GEN TOB TMP SXT
-#><lgl><chr><mic><mic><mic><mic><mic><mic><mic><mic><mic><mic><mic>
-#> 1 FALSE Esch… 32 32 4 64 64 8.00 8.00 1 1 16.0 20
-#> 2 FALSE Esch… 32 32 4 64 64 4.00 8.00 1 1 16.0 320
-#> 3 FALSE Esch… 4 2 64 8 4 8.00 0.12 16 16 0.5 20
-#> 4 FALSE Kleb… 32 32 16 64 64 8.00 8.00 1 1 0.5 20
-#> 5 FALSE Esch… 32 32 4 4 4 0.25 2.00 1 1 16.0 320
-#> 6 FALSE Citr… 32 32 16 64 64 64.00 32.00 1 1 0.5 20
-#> 7 FALSE Morg… 32 32 4 64 64 16.00 2.00 1 1 0.5 20
-#> 8 FALSE Prot… 16 32 4 1 4 8.00 0.12 1 1 16.0 320
-#> 9 FALSE Ente… 32 32 8 64 64 32.00 4.00 1 1 0.5 20
-#>10 FALSE Citr… 32 32 32 64 64 8.00 64.00 1 1 16.0 320
-#># ℹ 490 more rows
-#># ℹ 6 more variables: NIT <mic>, FOS <mic>, CIP <mic>, IPM <mic>, MEM <mic>,
-#># COL <mic>
-
-# Prepare a binary outcome and convert to ordered factor
-data<-esbl_isolates%>%
-mutate(esbl =factor(esbl, levels =c(FALSE, TRUE), ordered =TRUE))
-
-# Split into training and testing sets
-split<-initial_split(data)
-training_data<-training(split)
-testing_data<-testing(split)
-
-# Create and prep a recipe with MIC log2 transformation
-mic_recipe<-recipe(esbl~., data =training_data)%>%
-# Optionally remove non-predictive variables
-remove_role(genus, old_role ="predictor")%>%
-# Apply the log2 transformation to all MIC predictors
-step_mic_log2(all_mic_predictors())%>%
-prep()
-
-# View prepped recipe
-mic_recipe
-#>
-#>──Recipe──────────────────────────────────────────────────────────────────────
-#>
-#> ── Inputs
-#> Number of variables by role
-#> outcome: 1
-#> predictor: 17
-#> undeclared role: 1
-#>
-#> ── Training information
-#> Training data contained 375 data points and no incomplete rows.
-#>
-#> ── Operations
-#>• Log2 transformation of MIC columns: AMC, AMP, TZP, CXM, FOX, ... | Trained
-
-# Apply the recipe to training and testing data
-out_training<-bake(mic_recipe, new_data =NULL)
-out_testing<-bake(mic_recipe, new_data =testing_data)
-
-# Fit a logistic regression model
-fitted<-logistic_reg(mode ="classification")%>%
-set_engine("glm")%>%
-fit(esbl~., data =out_training)#>Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
-
-# Generate predictions on the test set
-predictions<-predict(fitted, out_testing)%>%
-bind_cols(out_testing)
-
-# Evaluate predictions using standard classification metrics
-our_metrics<-metric_set(accuracy, kap, ppv, npv)
-metrics<-our_metrics(predictions, truth =esbl, estimate =.pred_class)
-
-# Show performance:
-# - negative predictive value (NPV) of ~98%
-# - positive predictive value (PPV) of ~94%
-metrics#># A tibble: 4 × 3#> .metric .estimator .estimate#><chr><chr><dbl>
diff --git a/reference/antibiogram.html b/reference/antibiogram.html
index 7540effa9..88d095557 100644
--- a/reference/antibiogram.html
+++ b/reference/antibiogram.html
@@ -9,7 +9,7 @@ Adhering to previously described approaches (see Source) and especially the Baye
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -408,9 +408,9 @@ Adhering to previously described approaches (see Source) and especially the Baye
antibiogram(example_isolates, antimicrobials =c(aminoglycosides(), carbapenems()))
-#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#>ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#># An Antibiogram: 10 × 7#># Type: Non-WISCA with 95% CI#> Pathogen Amikacin Gentamicin Imipenem Kanamycin Meropenem Tobramycin
@@ -433,7 +433,7 @@ Adhering to previously described approaches (see Source) and especially the Baye
ab_transform ="atc", mo_transform ="gramstain")
-#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#>ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#># An Antibiogram: 2 × 5#># Type: Non-WISCA with 95% CI
@@ -449,7 +449,7 @@ Adhering to previously described approaches (see Source) and especially the Baye
ab_transform ="name", mo_transform ="name")
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#># An Antibiogram: 5 × 3#># Type: Non-WISCA with 95% CI#> Pathogen Imipenem Meropenem
@@ -487,7 +487,7 @@ Adhering to previously described approaches (see Source) and especially the Baye
antimicrobials =ureidopenicillins()+c("", "GEN", "tobra"), mo_transform ="gramstain")
-#>ℹ For ureidopenicillins() using column 'TZP' (piperacillin/tazobactam)
+#>ℹ For `ureidopenicillins()` using column 'TZP' (piperacillin/tazobactam)#># An Antibiogram: 2 × 4#># Type: Non-WISCA with 95% CI#> Pathogen Piperacillin/tazobac…¹ Piperacillin/tazobac…² Piperacillin/tazobac…³
@@ -524,9 +524,9 @@ Adhering to previously described approaches (see Source) and especially the Baye
antimicrobials =c(aminoglycosides(), carbapenems()), syndromic_group ="ward")
-#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#>ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#># An Antibiogram: 14 × 8#># Type: Non-WISCA with 95% CI#> `Syndromic Group` Pathogen Amikacin Gentamicin Imipenem Kanamycin Meropenem
@@ -551,7 +551,7 @@ Adhering to previously described approaches (see Source) and especially the Baye
# now define a data set with only E. coliex1<-example_isolates[which(mo_genus()=="Escherichia"), ]
-#>ℹ Using column 'mo' as input for mo_genus()
+#>ℹ Using column 'mo' as input for `mo_genus()`# with a custom language, though this will be determined automatically# (i.e., this table will be in Spanish on Spanish systems)
@@ -563,7 +563,7 @@ Adhering to previously described approaches (see Source) and especially the Baye
), language ="es")
-#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#>ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#># An Antibiogram: 2 × 5#># Type: Non-WISCA with 95% CI
@@ -603,7 +603,7 @@ Adhering to previously described approaches (see Source) and especially the Baye
syndromic_group ="ward", wisca =TRUE)
-#>ℹ For ureidopenicillins() using column 'TZP' (piperacillin/tazobactam)
+#>ℹ For `ureidopenicillins()` using column 'TZP' (piperacillin/tazobactam)# in an Rmd file, you would just need to return `ureido` in a chunk,# but to be explicit here:
diff --git a/reference/antimicrobial_selectors.html b/reference/antimicrobial_selectors.html
index 32840abdc..46a4e7854 100644
--- a/reference/antimicrobial_selectors.html
+++ b/reference/antimicrobial_selectors.html
@@ -17,7 +17,7 @@ my_data_with_all_these_columns %>%
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -284,10 +284,10 @@ my_data_with_all_these_columns %>%
# you can use the selectors separately to retrieve all possible antimicrobials:carbapenems()
-#>ℹ in carbapenems(): Imipenem/EDTA (IPE) and meropenem/nacubactam
-#> (MNC) are not included since only_treatable = TRUE.
-#>ℹ This 'ab' vector was retrieved using carbapenems(), which should
-#> normally be used inside a dplyr verb or data.frame call, e.g.:
+#>ℹ in `carbapenems()`: Imipenem/EDTA (`IPE`) and meropenem/nacubactam
+#> (`MNC`) are not included since `only_treatable = TRUE`.
+#>ℹ This 'ab' vector was retrieved using `carbapenems()`, which should
+#> normally be used inside a `dplyr` verb or `data.frame` call, e.g.:#> • your_data %>% select(carbapenems())#> • your_data %>% select(column_a, column_b, carbapenems())#> • your_data %>% filter(any(carbapenems() == "R"))
@@ -392,7 +392,7 @@ my_data_with_all_these_columns %>%
# select columns 'IPM' (imipenem) and 'MEM' (meropenem)example_isolates[, carbapenems()]
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#># A tibble: 2,000 × 2#> IPM MEM #><sir><sir>
@@ -410,7 +410,7 @@ my_data_with_all_these_columns %>%
# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB'example_isolates[, c("mo", aminoglycosides())]
-#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#>ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#># A tibble: 2,000 × 5#> mo GEN TOB AMK KAN
@@ -429,7 +429,7 @@ my_data_with_all_these_columns %>%
# select only antimicrobials with DDDs for oral treatmentexample_isolates[, administrable_per_os()]
-#>ℹ For administrable_per_os() using columns 'OXA' (oxacillin), 'FLC'
+#>ℹ For `administrable_per_os()` using columns 'OXA' (oxacillin), 'FLC'#> (flucloxacillin), 'AMX' (amoxicillin), 'AMC' (amoxicillin/clavulanic acid),#> 'AMP' (ampicillin), 'CXM' (cefuroxime), 'KAN' (kanamycin), 'TMP'#> (trimethoprim), 'NIT' (nitrofurantoin), 'FOS' (fosfomycin), 'LNZ'
@@ -457,7 +457,7 @@ my_data_with_all_these_columns %>%
# filter using any() or all()example_isolates[any(carbapenems()=="R"), ]
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#># A tibble: 55 × 46#> date patient age gender ward mo PEN OXA FLC AMX #><date><chr><dbl><chr><chr><mo><sir><sir><sir><sir>
@@ -479,7 +479,7 @@ my_data_with_all_these_columns %>%
#># TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,#># IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …subset(example_isolates, any(carbapenems()=="R"))
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#># A tibble: 55 × 46#> date patient age gender ward mo PEN OXA FLC AMX #><date><chr><dbl><chr><chr><mo><sir><sir><sir><sir>
@@ -503,7 +503,7 @@ my_data_with_all_these_columns %>%
# filter on any or all results in the carbapenem columns (i.e., IPM, MEM):example_isolates[any(carbapenems()), ]
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#>ℹ Filtering any of columns 'IPM' and 'MEM' to contain value "S", "I" or "R"#># A tibble: 962 × 46#> date patient age gender ward mo PEN OXA FLC AMX
@@ -526,7 +526,7 @@ my_data_with_all_these_columns %>%
#># TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,#># IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …example_isolates[all(carbapenems()), ]
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#>ℹ Filtering all of columns 'IPM' and 'MEM' to contain value "S", "I" or "R"#># A tibble: 756 × 46#> date patient age gender ward mo PEN OXA FLC AMX
@@ -551,8 +551,8 @@ my_data_with_all_these_columns %>%
# filter with multiple antimicrobial selectors using c()example_isolates[all(c(carbapenems(), aminoglycosides())=="R"), ]
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
-#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#># A tibble: 26 × 46#> date patient age gender ward mo PEN OXA FLC AMX
@@ -577,8 +577,8 @@ my_data_with_all_these_columns %>%
# filter + select in one go: get penicillins in carbapenem-resistant strainsexample_isolates[any(carbapenems()=="R"), penicillins()]
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
-#>ℹ For penicillins() using columns 'PEN' (benzylpenicillin), 'OXA'
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `penicillins()` using columns 'PEN' (benzylpenicillin), 'OXA'#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), and 'TZP'#> (piperacillin/tazobactam)
@@ -603,11 +603,11 @@ my_data_with_all_these_columns %>%
# drugs are both omitted since benzylpenicillin is not administrable per os# and erythromycin is not a penicillin:example_isolates[, penicillins()&administrable_per_os()]
-#>ℹ For penicillins() using columns 'PEN' (benzylpenicillin), 'OXA'
+#>ℹ For `penicillins()` using columns 'PEN' (benzylpenicillin), 'OXA'#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), and 'TZP'#> (piperacillin/tazobactam)
-#>ℹ For administrable_per_os() using columns 'OXA' (oxacillin), 'FLC'
+#>ℹ For `administrable_per_os()` using columns 'OXA' (oxacillin), 'FLC'#> (flucloxacillin), 'AMX' (amoxicillin), 'AMC' (amoxicillin/clavulanic acid),#> 'AMP' (ampicillin), 'CXM' (cefuroxime), 'KAN' (kanamycin), 'TMP'#> (trimethoprim), 'NIT' (nitrofurantoin), 'FOS' (fosfomycin), 'LNZ'
@@ -635,7 +635,7 @@ my_data_with_all_these_columns %>%
# very flexible. For instance, to select antimicrobials with an oral DDD# of at least 1 gram:example_isolates[, amr_selector(oral_ddd>1&oral_units=="g")]
-#>ℹ For amr_selector(oral_ddd > 1 & oral_units == "g") using columns 'OXA'
+#>ℹ For `amr_selector(oral_ddd > 1 & oral_units == "g")` using columns 'OXA'#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'KAN' (kanamycin), 'FOS'#> (fosfomycin), 'LNZ' (linezolid), 'VAN' (vancomycin), 'ERY' (erythromycin),
@@ -679,17 +679,17 @@ my_data_with_all_these_columns %>%
#> The following objects are masked from ‘package:AMR’:#>#> %like%, like
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#>Warning: It should never be needed to print an antimicrobial selector class. Are you
-#> using data.table? Then add the argument with = FALSE, see our examples at
-#>?amr_selector.
+#> using data.table? Then add the argument `with = FALSE`, see our examples at
+#>`?amr_selector`.#> Class 'amr_selector'#> [1] IPM MEMif(require("data.table")){# so `with = FALSE` is requireddt[, carbapenems(), with =FALSE]}
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#> IPM MEM#> <sir> <sir>#> 1: <NA> <NA>
@@ -708,7 +708,7 @@ my_data_with_all_these_columns %>%
if(require("data.table")){dt[, c("mo", aminoglycosides())]}
-#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#>ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#> mo GEN TOB AMK KAN#> <mo> <sir> <sir> <sir> <sir>
@@ -726,8 +726,8 @@ my_data_with_all_these_columns %>%
if(require("data.table")){dt[, c(carbapenems(), aminoglycosides())]}
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
-#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#> IPM MEM GEN TOB AMK KAN#> <sir> <sir> <sir> <sir> <sir> <sir>
@@ -747,7 +747,7 @@ my_data_with_all_these_columns %>%
if(require("data.table")){dt[any(carbapenems()=="S"), ]}
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#> date patient age gender ward mo PEN OXA FLC#> <Date> <char> <num> <char> <char> <mo> <sir> <sir> <sir>#> 1: 2002-01-19 738003 71 M Clinical B_ESCHR_COLI R <NA> <NA>
@@ -816,8 +816,8 @@ my_data_with_all_these_columns %>%
if(require("data.table")){dt[any(carbapenems()=="S"), penicillins(), with =FALSE]}
-#>ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
-#>ℹ For penicillins() using columns 'PEN' (benzylpenicillin), 'OXA'
+#>ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#>ℹ For `penicillins()` using columns 'PEN' (benzylpenicillin), 'OXA'#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), and 'TZP'#> (piperacillin/tazobactam)
diff --git a/reference/antimicrobials.html b/reference/antimicrobials.html
index 36b2c3e54..0e2db842d 100644
--- a/reference/antimicrobials.html
+++ b/reference/antimicrobials.html
@@ -9,7 +9,7 @@ The antibiotics data set has been renamed to antimicrobials. The old name will b
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/as.ab.html b/reference/as.ab.html
index 1bbf9d171..18441c335 100644
--- a/reference/as.ab.html
+++ b/reference/as.ab.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/as.av.html b/reference/as.av.html
index b52285de8..06db8de4b 100644
--- a/reference/as.av.html
+++ b/reference/as.av.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/as.disk.html b/reference/as.disk.html
index 6282bb235..91b5a9361 100644
--- a/reference/as.disk.html
+++ b/reference/as.disk.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/as.mic.html b/reference/as.mic.html
index bb8bb0e71..f61853ccc 100644
--- a/reference/as.mic.html
+++ b/reference/as.mic.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/as.mo.html b/reference/as.mo.html
index e88757269..0a9c36231 100644
--- a/reference/as.mo.html
+++ b/reference/as.mo.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/as.sir.html b/reference/as.sir.html
index 9210fc763..0d6eed4d7 100644
--- a/reference/as.sir.html
+++ b/reference/as.sir.html
@@ -9,7 +9,7 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -415,10 +415,10 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
#># A tibble: 4 × 18#> datetime index method ab_given mo_given host_given input_given#><dttm><int><chr><chr><chr><chr><chr>
-#>1 2025-07-17 17:15:56 1 MIC amoxicillin Escherich… human 8
-#>2 2025-07-17 17:15:56 1 MIC cipro Escherich… human 0.256
-#>3 2025-07-17 17:15:57 1 DISK tobra Escherich… human 16
-#>4 2025-07-17 17:15:57 1 DISK genta Escherich… human 18
+#>1 2025-07-17 17:39:19 1 MIC amoxicillin Escherich… human 8
+#>2 2025-07-17 17:39:19 1 MIC cipro Escherich… human 0.256
+#>3 2025-07-17 17:39:19 1 DISK tobra Escherich… human 16
+#>4 2025-07-17 17:39:19 1 DISK genta Escherich… human 18 #># ℹ 11 more variables: ab <ab>, mo <mo>, host <chr>, input <chr>,#># outcome <sir>, notes <chr>, guideline <chr>, ref_table <chr>, uti <lgl>,#># breakpoint_S_R <chr>, site <chr>
@@ -427,7 +427,7 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
# using parallel computing, which is available in base R:as.sir(df_wide, parallel =TRUE, info =TRUE)#>ℹ Returning previously coerced values for various antimicrobials. Run
-#>ab_reset_session() to reset this. This note will be shown once per
+#>`ab_reset_session()` to reset this. This note will be shown once per#> session.#>#>Running in parallel mode using 3 out of 4 cores, on columns 'amoxicillin',
@@ -435,7 +435,7 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
#> DONE#>#>
-#>ℹ Run sir_interpretation_history() to retrieve a logbook with all details
+#>ℹ Run `sir_interpretation_history()` to retrieve a logbook with all details#> of the breakpoint interpretations.#> microorganism amoxicillin cipro tobra genta ERY#> 1 Escherichia coli S I S S R
@@ -548,7 +548,7 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
df_wide%>%mutate_at(vars(cipro:genta), as.sir, mo ="E. coli", uti =TRUE)}
-#>ℹ For aminopenicillins() using column 'amoxicillin'
+#>ℹ For `aminopenicillins()` using column 'amoxicillin'#>Warning: There was 1 warning in `mutate()`.#>ℹ In argument: `across(...)`.#> Caused by warning:
@@ -619,7 +619,7 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
# For CLEANING existing SIR values -------------------------------------as.sir(c("S", "SDD", "I", "R", "NI", "A", "B", "C"))
-#>Warning: in as.sir(): 3 results in index '21' truncated (38%) that were invalid
+#>Warning: in `as.sir()`: 3 results in index '21' truncated (38%) that were invalid#> antimicrobial interpretations: "A", "B", and "C"#> Class 'sir'#> [1] S SDD I R NI <NA> <NA> <NA>
diff --git a/reference/atc_online.html b/reference/atc_online.html
index dc819ee09..90ae39507 100644
--- a/reference/atc_online.html
+++ b/reference/atc_online.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -135,10 +135,10 @@
atc_online_property("J01CA04", property ="groups")# search hierarchical groups of amoxicillin}#> Loading required namespace: rvest
-#>ℹ in atc_online_property(): no properties found for ATC QG51AA03. Please
+#>ℹ in `atc_online_property()`: no properties found for ATC QG51AA03. Please#> check#> https://atcddd.fhi.no/atcvet/atcvet_index/?code=QG51AA03&showdescription=no.
-#>ℹ in atc_online_property(): no properties found for ATC QJ01CA04. Please
+#>ℹ in `atc_online_property()`: no properties found for ATC QJ01CA04. Please#> check#> https://atcddd.fhi.no/atcvet/atcvet_index/?code=QJ01CA04&showdescription=no.#> [1] "ANTIINFECTIVES FOR SYSTEMIC USE"
diff --git a/reference/av_from_text.html b/reference/av_from_text.html
index 4951faab9..35035b819 100644
--- a/reference/av_from_text.html
+++ b/reference/av_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/av_property.html b/reference/av_property.html
index c67e2895c..2c67c9d83 100644
--- a/reference/av_property.html
+++ b/reference/av_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/availability.html b/reference/availability.html
index 95a43ea6c..86520cfce 100644
--- a/reference/availability.html
+++ b/reference/availability.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html
index 4ab88123a..260688ea5 100644
--- a/reference/bug_drug_combinations.html
+++ b/reference/bug_drug_combinations.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/clinical_breakpoints.html b/reference/clinical_breakpoints.html
index 4b0f08324..0b44dda0c 100644
--- a/reference/clinical_breakpoints.html
+++ b/reference/clinical_breakpoints.html
@@ -21,7 +21,7 @@ Use as.sir() to transform MICs or disks measurements to SIR values.">AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/count.html b/reference/count.html
index 725e85c56..d48a6e765 100644
--- a/reference/count.html
+++ b/reference/count.html
@@ -9,7 +9,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -243,7 +243,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
group_by(ward)%>%count_df(translate =FALSE)}
-#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#>ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#># A tibble: 12 × 4#> ward antibiotic interpretation value
diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html
index 32d96ec5b..dd6096039 100644
--- a/reference/custom_eucast_rules.html
+++ b/reference/custom_eucast_rules.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/custom_mdro_guideline.html b/reference/custom_mdro_guideline.html
index 301995475..80eddacd0 100644
--- a/reference/custom_mdro_guideline.html
+++ b/reference/custom_mdro_guideline.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -241,10 +241,10 @@
#> Results will be of class 'factor', with ordered levels: Negative < Custom MDRO 1 < Custom MDRO 2out<-mdro(example_isolates, guideline =my_guideline)
-#>ℹ For cephalosporins_2nd() using columns 'CXM' (cefuroxime) and 'FOX'
+#>ℹ For `cephalosporins_2nd()` using columns 'CXM' (cefuroxime) and 'FOX'#> (cefoxitin)
-#>ℹ Assuming a filter on all 2 cephalosporins_2nd. Wrap around all() or
-#>any() to prevent this note.
+#>ℹ Assuming a filter on all 2 cephalosporins_2nd. Wrap around `all()` or
+#>`any()` to prevent this note.table(out)#> out#> Negative Custom MDRO 1 Custom MDRO 2
diff --git a/reference/dosage.html b/reference/dosage.html
index 2313b79d4..965ec7b20 100644
--- a/reference/dosage.html
+++ b/reference/dosage.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/esbl_isolates.html b/reference/esbl_isolates.html
index 84b45fa03..45f74c006 100644
--- a/reference/esbl_isolates.html
+++ b/reference/esbl_isolates.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/eucast_rules.html b/reference/eucast_rules.html
index f55138adb..ed43d91a5 100644
--- a/reference/eucast_rules.html
+++ b/reference/eucast_rules.html
@@ -9,7 +9,7 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -215,7 +215,7 @@ Leclercq et al. EUCAST expert rules in antimicrobial susceptibility test
# apply EUCAST rules: some results wil be changedb<-eucast_rules(a, overwrite =TRUE)
-#>Warning: in eucast_rules(): not all columns with antimicrobial results are of
+#>Warning: in `eucast_rules()`: not all columns with antimicrobial results are of#> class 'sir'. Transform them on beforehand, with e.g.:#> - a %>% as.sir(CXM:AMX)#> - a %>% mutate_if(is_sir_eligible, as.sir)
@@ -233,7 +233,7 @@ Leclercq et al. EUCAST expert rules in antimicrobial susceptibility test
# do not apply EUCAST rules, but rather get a data.frame# containing all details about the transformations:c<-eucast_rules(a, overwrite =TRUE, verbose =TRUE)
-#>Warning: in eucast_rules(): not all columns with antimicrobial results are of
+#>Warning: in `eucast_rules()`: not all columns with antimicrobial results are of#> class 'sir'. Transform them on beforehand, with e.g.:#> - a %>% as.sir(CXM:AMX)#> - a %>% mutate_if(is_sir_eligible, as.sir)
diff --git a/reference/example_isolates.html b/reference/example_isolates.html
index 6bf667ef9..58fad9831 100644
--- a/reference/example_isolates.html
+++ b/reference/example_isolates.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/example_isolates_unclean.html b/reference/example_isolates_unclean.html
index ebec2825b..47b73a2fc 100644
--- a/reference/example_isolates_unclean.html
+++ b/reference/example_isolates_unclean.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/export_ncbi_biosample.html b/reference/export_ncbi_biosample.html
index f476096ee..d9548371b 100644
--- a/reference/export_ncbi_biosample.html
+++ b/reference/export_ncbi_biosample.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/first_isolate.html b/reference/first_isolate.html
index b94ea2e49..668256f32 100644
--- a/reference/first_isolate.html
+++ b/reference/first_isolate.html
@@ -9,7 +9,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -227,8 +227,8 @@
example_isolates[first_isolate(info =TRUE), ]#>ℹ Determining first isolates using an episode length of 365 days
-#>ℹ Using column 'date' as input for col_date.
-#>ℹ Using column 'patient' as input for col_patient_id.
+#>ℹ Using column 'date' as input for `col_date`.
+#>ℹ Using column 'patient' as input for `col_patient_id`.#>ℹ Basing inclusion on all antimicrobial results, using a points threshold#> of 2#>ℹ Excluding 16 isolates with a microbial ID 'UNKNOWN' (in column 'mo')
@@ -257,7 +257,7 @@
# \donttest{# get all first Gram-negativesexample_isolates[which(first_isolate(info =FALSE)&mo_is_gram_negative()), ]
-#>ℹ Using column 'mo' as input for mo_is_gram_negative()
+#>ℹ Using column 'mo' as input for `mo_is_gram_negative()`#># A tibble: 441 × 46#> date patient age gender ward mo PEN OXA FLC AMX #><date><chr><dbl><chr><chr><mo><sir><sir><sir><sir>
diff --git a/reference/g.test.html b/reference/g.test.html
index 583c367ae..2fa19e40f 100644
--- a/reference/g.test.html
+++ b/reference/g.test.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/get_episode.html b/reference/get_episode.html
index f6c213e42..03574b67b 100644
--- a/reference/get_episode.html
+++ b/reference/get_episode.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
diff --git a/reference/ggplot_pca.html b/reference/ggplot_pca.html
index 4375a058a..56b993a73 100644
--- a/reference/ggplot_pca.html
+++ b/reference/ggplot_pca.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9010
+ 3.0.0.9011
@@ -224,7 +224,7 @@
#>ℹ In group 5: `order = "Lactobacillales"` `genus = "Enterococcus"`.#> Caused by warning:#>! Introducing NA: only 14 results available for PEN in group: order =
-#> "Lactobacillales", genus = "Enterococcus" (minimum = 30).
+#> "Lactobacillales", genus = "Enterococcus" (`minimum` = 30).#>ℹ Run `dplyr::last_dplyr_warnings()` to see the 72 remaining warnings.#>ℹ Columns selected for PCA: "AMC", "CAZ", "CTX", "CXM", "GEN", "SXT",#> "TMP", and "TOB". Total observations available: 7.
diff --git a/reference/ggplot_sir-10.png b/reference/ggplot_sir-10.png
new file mode 100644
index 0000000000000000000000000000000000000000..eb21cafb405a6285ecb375efad832528f8801f5f
GIT binary patch
literal 46478
zcmeFYXH=72*De|hiYS6gld2NBlu)FDjS@gWdIzNwL+@QwP-zl+7YHC-q<0VvQlp_s
z2N7cE(gK8X7V7)`Is2S3_8H$kKla#bJP#?}_r2=8<~6T5^GZ`)iIRem0s?_h!jlx@I+I;E&ek%O6_j#tI|sk&**DP-ajp@Ei$A0_%5om$2}k@NT*7>
zpHQ@yl+o9i5v?SjSHDOq+4CGEjty=QoB~=d{~6-{;y)21#<&)hy
z&H{dlsNU5DQ)l4Sr7%;qxI}>@3v*Uer%-~9={7w6S+6gU|)c7C+
zT=r!mZNQVn0WJb7SsSkXadWh_=mkOGRHTBhmUDzT#K-t`j)s1cSs*HJ*2UBEM2s%6WyS;~s2X
zSGqNor+qKU2mAWxfys_h?2ke0-fq;^0ku?2ppxo3SKy0gu69*2GUlO$}ji##ZOEZ(}gb6a~4i_O=P6dMo<}Y0(Neew=}y6I27Sw6PkA^5j7sn$ApFQ-s#Vgxu2o@-1f0_;LJ22*l#@
zjn?y!o%}EBVyIH`#8i%^sve}-6~h(o>jxY&Q_?g}%zE}6x8KE!LJ33)$LmL)Ruc-a
z8rg^0Cn6}t#x?l+#JVimy9td2oMxrlqPzravU@K~3f>ZD!*1B;!T0JISCv8(;}@Bc
z@tfz#?(F<}Barw&C##T~-(L6U?&5hgQcq|p0(y{$mTsTZi3zwLq+@b5-}#RPs@+n=
z1!FJ+q7)&b$-f^2U9~j+2D?FwaSy89Z@95Le}6sworOV|gyk9?(=+#=NVZIu;Twcm
zVbnYydD5Xej*d*0Ss%XlZaw;-Arr&7^D05GgoW#&LxGlLkxQwFPbkL(ozH2NQEROiL^-%pqs?)W&44q3}5zakHkc#d-9@(G|35&mK?&>KJkoj^HV*
zd6KdpdS@w~AlTq+=W6D7l9mw9Lar?mIhr&Elj8*XB=`IxI$YRat7Rj~x>i7pGW7cgogc-K>l{Z&hrV45jei!GrJy|MV$SUQK-qO)<5y#^&s^J1
zaCi8*yL585zFl;TcHh!;8M0c+$hP!u-U{KzM;<|!y7ueJDD3+i7H@&gcZ$I^MtEN%
z=z%NQov2kBo}kiKs1I1xtPTy=pP4=J(2Lv>@HI?EM#9q9$c;kqMV2NNP`)t>irgX98$0un9t{=qfMNm-jwJ*E2k(7^OoR}wn*=|!=Ch#q6Q7owNw2>q_Y^y`e+Dpi)^&Mo%
zj(2V8XSOVN;+(it-_}o
ze;>D>_ld~bn|7y2fyylBZR!2)uLalEY-l!7
znPqP;+9ZnWW0eIz9Qwk~@+FPKM1GIBlgTP*qXN;dmfQSv^mcQQdkbF{nV{)K*WP@m
zN$?8|!M^?FQY(%P?2@c;8K)a@EM>!GlcLS|Rw&F#>KV&{@~GA4%!_3)n>=tOZgTW3
z#1r8LS!mOPJJ%#DB9FdQWV%L0KNMP0<2*2L-xLwk(}?a;xkqJoyjDpcv+sO1Ibu*8
zre}O6%&s3SE+zN4w6(irrXDZ4jdc_|+1NX?D2~{dZ_VAT=2s9El1<6KptY8feec=@
zZm+i_HCj3K_`>LdhJVcc)WWIn*Jlc1a+}Q
z>*|kpb9F0PLc5v*>?k=lAG1gcC}*a;Vgl7o)b)y8WVLvTugDlRojyhR4kPf*GKvH?Fan&xV=pc3ke#Ty`Uc-yoSY98N&(h1U0u
zLW67_I$XTRM7N&}xS?((7*;=mvqi~dn%~XPiqhB|b&U%7o$Yp2*B*Zw0#Unk+WUls
zgOqZcl_+Y{I+Du3>Pd{dc5S2b+?M+XR4GN`RN3_QRD_PzZin>~>Gp?TwM93+G*=%e
zYc-&q^xsE6u~kfP>PqDmD*SyX;l=LdA!UB-7AINLcM3w}P5P84RFQm))0r{iy40fn
zZ!y-LTpN}sLBh%ndvl$`N9WMfVc~-_>$?=3^$w+IXV~1{LqtQ!Biih?i3ZxukG(q<
zJ49>RjM|%)>6nudPCTe;I{daI*{TLbsDEe1%bOyHD;lDQXFulO=pOMx-p@SpdNJpB
z<3J~mAY2eKN)vSlPm19;^{wgveB)Eea
zJ{-E}6~Bqlb+UV&95dIU+Ou)j%IAh(`Ouz8iI7aq?xyCtmwq
zvjq1{vEi2jOY(;r|JH=mQvfE}O9?SO)EQ~91z3@j^?N-IinOJ(+
zo@`&m8KmAqOjLDFmXgk|}Jc8G2;ouZ2Cp+bCed}C&O}42jDK|IJk5^GU3xRmL
z?rWcfXk+1wq>h7LUgis9r557`JUeH_hwn@0e!0-^92Ww+guR#<{chb@?VuQ+Lvctr
zNWw&OHK??G5*>_dTJ_Jq)2Cva5S_z{ub&jYb9guUNlwh%-76Y%mmjpq+DxV^xVz@x
zjh&ohWVQOhn~QYPq}H6!z2k)aj7o60`F>B2Ox|a3K)iclfZI`pYaLQd5aP}w|-kgpD}{rpv$s^d}s
zw_N%O=y&UYoBhy+MBDqNS2z`qXw2cIrrWsuk8?~qqsVu2d-WJj+A;GxkUXt#W<_P)
zsSb?+?A=#J!pp%VE-9Rnjru{!aVcHGk#{>Uwd5_*TE=j0IdR>zD)-BtT`IpvcFTc^
z8W)+ojw~-hk*qy+DSNu3*gR};il1-~R;{lld8g?YY{z_=;hMm9Qr_OL*h(>zjG}UB
z?mqG(o9LF*OC@2+E?zlJ1sjnqBtg{ng~ZJB#EQ(2$*OZ?TQD~@GgF*2x9KJ`i^<~*
zNnL?c5Qv@T9|(dMelQNjYWvK-a~%E-wM}#=9-a--(@fAZfFB92?>j_BW*V3BGoDwe
zLF~Vw+-0UW46OWkkXUGjufIIFW9C}+<7{Cl?Ixy&Ta28WEEZ?IFR2Ijx|n!B!5p=j
z$ooV@N{?X1fex~a*)nDy^N&?o>}lji%g#l->c7;s73;B@RAo@%!QO5)M
z%^)DT4A=LNV~Ymt*8M-b1=)TF_J@Y>Ahm;N<7)*fPYDI1b8tke`3Yg>*)vuhsgQ
zJ*~`rtVQ92M+Sx-R{RFK7bFn`s*~M0__fne7igzyx8xXZ{%(h1_DIJnKr$gTh=pvm>Wv|z
zya4Rj`CCvp)0|d+vh$r?adITaf0r}QhZ|+H%DfmEV%Q;KzfO5#tz0>!Ch>ilmaj1@
zGrUFNvlBsJe&@?}HP5fkR4i>wr64acy2w@$*I4lJ1H4Lhxc|mtBHkc#xhiIJH}uP|
z^TW}Fn{1h3?J_Sg{*klfk@5X1QuWGvbYxAUA_S*bbuH5DKG6}$;*JMp+uN5Z0!3f4
zmdVXsw7`@IYONXm)`CtUD9|KDJ<0W|%q#5nGIOgwtIGAVh|~_-T>Dt}sMo~z{_!DF
zNZQSX611g)Sl{lQ7-U3YrHjoKioj1&LLK$4eMrgC8zdjaw(kpiI8Itt;~mNv|05d1
zJ}>$g-@fne6;WhPEn&kEZfG9-&drxUec-$D4Ob{QfAi^R{81OAvn<87qo-x9e+J2*
zf{vIM!^yl=b;BWLG-@9bIyYu0y12-m2HRb&<{`gk6`~jw68xov@rcS>DPtJ~>c-t}
zrr{8$O$pPtINxrE2*vLgVGhjUB0l_S(Nlku|*#!Dkub9*zF?r*)8z3VBtPJtkvld9PZOr)s@@BR+Mxrz$GKAoi<=2PcZa!w|)j95nlop%Ruw|(DkJl}pv
zq#S-{TFQv+k8l9IlWQtKtef~DlG}~lBmR!PPS$BzQ52q5cQRbO;P;)d$I+?rEj5N!
zry8qdhO5ZeJh_Q5ri*Mf^Ix>XA*(ACzFrBw>LSrWH!aO$#adH`zPqsL{U#n3ub=hG
zU4Itrmr#3@2sNekF?)Bw%-r1acx*h+qH(2XWA;OJMbNpiFQpw7mW@P{LXW;wnh0%{
zny6usRzCPt=fgY^ih1&VUZv){9zWNZ2^+EkkvH}ETKUN2FWUHCrZ37j50~Krp?xb2
z21I;9VoL%9mKZ!SzC3b_y*pFK{tE2_&S=Dw$LXdV2W~IMm^7*Fd}^Op(j%4VGW8=LSD
z-}-t*pcXwtU%68k>)T5gOA7`)U7J|B
z_!*6J()tZ6Y*?o2SE5aZP1zD8N#*8E-3I3)T>~}QI;~uThCQ5KRfdl(nC88@PqI^s
z{oVLrt6C?j)0;KFUQv!KjK%YNWqQ`K*t#SzbFsk&$ZbrTq}w(FD{J6&|Ghidjl-f+
zvcgCk1X66&w0ZfbudKR}8tbd->gpN;1Qz9qhnAPuez91O;OOOj^HV$n&m#SBZUj-*kZ^!0AZGZkA%19PFmcrh93B@Xm@o#QvIqE7Nj9qB_me6&ppwIG@tI06S>twtO
zc4Jc0A|NL-)U=Eb%a<>HqI8>eCO9H=q@MQO85wMm%5)*)Sb?6Q
zW(^PJR%VHahaCSE7
zi}e!}qlfARm-?_YIP^z(VYOexoP>k~b+Qu$ETf-w?vUQ4su|lQfG~K4**+rVw$cqh
zg^Z2)+EQt&5>pW&q4)1oUhvy+IjM?CmsYkEe(`(InKSKSgUXDpuloH;v=e&*vJ?yv
z*3M#sj+{HKDn+T`CMB4C-UEGz*}Ch9$m
zIg-IK=oP{&txEI}Fi8(Q1RS3eRPbQHEpah%{2$Eh<&{4PUce4r@r(MFfv3G;JUh)tFgPP4qfvd}!QKO44RM=ol5X?<>m#WE-W>Db0Y_3TR*6*u5MPx`NIXFv7H)z
z8T5#ksLOr!`o_j%K0~8aDpH?}NPd<*;xgCTOt31=rR=)PqGv&e82bvIcG>B1yjGct1efjso83^cVFTyoS8f~!vFKsdQLBhL
zCEPHHL^=|T6>v0-v-&ZVPEqQkdypah4G)3v&J6&_+rdsrq8trd0t4m~Hj1EM3l
zvKrMk@P@ilk~}7f12qpH{mf9&YUF3`=SMm@>=9i)BzIL^t12IjuG&TclahODAyc>H
znzlp=%!JLyqUL!SRyTzZ%k-h4p=V5o55~OTf$5tkY`VdRU&KaRN%Z#i%Eu4POZ1Ha
z0Z6UREpjQ{ixQlg?XznVp%+`|{^odNPRUTnIs*)5eo40mNn|1oRkw+GpaQGG~xBm
zVff2hy?+I|rn;u4W=`_{1S%ygEG&pR0A|CK6)^D7$*Jr?em@%u9Lqy?#UU3we;QO|
z&u4_$$0{gFeN&7RFYz&}N20yF?1h%kF!kqmV=hsMy3DJUE$8%$&1hw~2KU+C0a%*8
ze*<=nz)0pMyL6*q(8w>LYP$xBL}qrOBS$b^uZ#iTn%6z>E9G2chTImTp8jn0UKv$f
zWsYr}_L&sqKnh{}t8X`7;pnXzYVO-;%(D`f>}A+sg|7!30jken*{7c0U$!oTjj7B;
z%Paf32`9@4*Jqugl5zHe7k$iUW4U@Ync$N#E74cP5un!fYZ#g3gp89UVPov8vt~!#^d|8>+T1cerrY
zdwqH}G|JA>;qwgd)0=@8Gek^5?PJky+Y??>cPp?t{u|Iv25qg0SN2)xoZ_ktSuA2*
zrmT~}?Kv9H(Ub%1mCwA{S*@MDz20JvL@J9IvjI@S!JH|u@gk57yAgr+$pfBRW0%5I
zaV)M2kx7J02~-4NH$b|<#vjYzrURxal2UsH?6v;c=2a(8Q!j}Q%T=`$*9D6kF+0yg
zRt@MWDJhpT3bbF{&jt%dh>3}LSm52jU2$luv&=}4=+i~Tor5U$X2_0F5
z#4)(66^(e2d3E>ep+mkwQ&+x2=BgXM4_Q7`8e_%MAt~$DtHK%E?>}`U4R0D6ElVfM
zKmVUv0MI*0Ol#>DYtf31K~T}2Y)xzV(U_lheBTL(&iNB&YG*QIMJ0rUzB2jr0=(iO
zL;}WiS_xQbH#vfM$HiM;5^s{5l6dc
z$g%1srM9xZOrp$c{aU8Z*zj=8-;KesWS0_>8Ym;CUB@Qu8?TZL~N0-BvB>bI6r+tov!n_F8GF?BXu+uKnWE?zv$
zs;iUafD_#J0%D$U)clt4$j9v&_pa9Ez8jK+1Ump`Qt#m8B(ID^aF}Kl3!Vd4<~hTr
ztk|ezfyb^p`AGiQBRXQuzTt4|I<-j=&5jX<-0BXAe`Cs7xucMhP`v5hp
zs#el!nUz@W3>16;++ZxAF999}KAf%h0s;aSE6mmM`fT~
z73*6*UY^GhK8m>O$EUV4W>o_mr+^W`gfW{Rg;w$|qxeRjjg;8VpCrKF=jvDLl{Na1
z6plRpmU?xC6OQ(79@N{#FiBQHYh0Z6*>>amRUV5&tJPIiO)hp?tvPZU9|Y|A(y_4XW&m;LlrW@i6yMt-?yc9UUQmy@1`!w9ttlHJLd
zh>VvX4%VCI%qo(K(nGcigB=2!GkM{dqz2RB2|Bszu;>|J+C8>@l27*yJn}#884s@3
zalBg)qk|Mag$OQm5f7+B!-s9AZY)al1w*e|%4Ln${AhfGNF5q|2v>n#HvTXS%!9u_
zhrL1nH6Ogay+_{<&wgl_2v9Fh3-Pia@&;_eF=8DV-_JphC_X}cr^i?IJOJ*gK
z4TG;r7v5rxL9cCBIr!a}qChOqqC};nq}V&^{cEZdCTt!T+R5iuV(Z-S)fa$G*hJJB
zw#iG896Bb`Mo!c_)BqC0A}TJPi0c;gWMO7t__Y;qBxI>JYD8L`nVCVBF3RES9cvcr
zD=cZsQG4dS2sAKBeO2E!BR_@tDoUnXjSq0{Q$#n)e4XA~cS%XN!3lxm-iMeq?qZ5d
zUc;RudEif76Z|MU-+4}yes;+@7*x*k)x9q!KSg!nNIhC6??v>l+WNVkgG)6lI$A+R
z2eLIug=Ur~-ZGM}WjlV%kf#sT5Q(+?$@ngae%OP4pjP4;Y5<4(U|Sj=HCw6DR@^gE
zq^P8%|GfJE)l8^g34{?R1mS=@_L4kePbUuu;
z$LO
zt3GDoFdL^1mp(lqY2pU(B}baw0mCnyN)C$A_iTDow!CH#`pUk(AS9V#CfKu6@;2t~
z#G)hD!Rf7x_#>sOxiHur&u>_G*3N(fKSL`%VA6;;66W>ri
z?sQ|CRb5&(2PNA?6NsI}Y43;POyZ6*hIg(JKl+<_w$vtA!!R<};8C-Ug2TRu
z<&KYAEw7tb>Q@q>ES3?w_;267`A}f|jneUSZ~aNlA}0F=lGYu4Il#Ta;L$27^`#^y
z-O2qEb(o5aepgtb1VVmhps!y66JJg5C*96K6=WtRDJR$B@lEW;kQ{)9dlX?Vjn@fZojeQ95j12Y&X+
z$cMSJyuY`Z5X;dVNDx(j^q466I5HLq6+sLY2LKT2*q#as!Z@Tb7O#@RX-?k|^fV<3
z0Ji(`3>4p!EE2H2G*aebO3YbaUUmwv0KR6$35g6y|F}nc#%_g5-<;Lfc&;+pHLf93
zV!7Xll(@E<4~|S#5zY7`AW^^o3MbZeDKw-@brn1VG;KoQJ7RoehbDk5OwDx*K@S6-Xg+p|ZO)YN!=VsL9lPZU>8y-uD`
zS%`K21U9eVsPC}IlsF9NI0tjs#!D+t_`r$p;)(a7^H1)MI}Az2jA$cO765XX{G+T);v;ijkqM`E9~m(lWT8aUK%+62M(H-~$hE
z-%x?1AK`)*=~NIAyLnJCF|oOQu^PsVpu=5CkhPOL@RTsiP6uWNa>HRt%pH<-V8BrA
zK+7IixW-C(2W!yc);F*ZYTgL33PQG^A8{g%sXY3U$BsW>>L?0*39-!a>i!SfVUOidN~UU6
zBg>M5S09agbL?ugl_WjB5)UjRV8;kF9Jcjwuen7RSHscCuu)*N+%P0OYz6ONv=qSB
zIE^aLE&^`Ef8jN&rs6geha^C#Q!`tL?;aBzxi+N=6E#DD$|$gnlmMn1N)aVhf^eyO
zI9-mGikovL_joneYSl5=3u=xtR9+p*qc;nri;V;GSV_%CacDuwsMr9n#|lW9M3n`n
zsuujo+w3=hgMU9{<9KS%sJs$56|Ybqfrpff#dx3Y;wm?&DHp*9-i($vM3gx*=T`wV
zc*v8a)=oSaL=B9OH?C0y?X)`&c{WoAcJ4%j2n%JCw!FCL=kD$8ZBAAZbEJoRiKZMH
zWiv)h;ijg{dxI_tb^2rw(Rd%XlB#@_y{r(6va;!JuQD{4iPKdEhT7Z#B%|dmzl=m+
zRz^5B+Re*{@`z>9*)wOfX0~S&D$uvI3nWN9`2iO%UTo$jh@qPK?4N~nzF4Uk%76iy
z$3xcPaJF)+fZfq_syTqviAk!U9p9^ecxS@y;pWI(Si322}_
zInk@AGTD0vN~K4+jcrePXAl+O^l)FbHlOIe63vBMg+@fc?~LzgOps{&`#|8{0t?vN
zyvHF+V{80y&g@>-!!DQfCz)51_JQfKdNJFA0O}bku+&01_7OZt6yx7dJjjv3l8~Yr
zVx!&yb3;=`{@CMcBF@OQTMrlOSJr(K$!^c4f;h*0*rTSQ)X%c1`y?c3bO)G><*zot
z#e=iw`_jjRWn}hQ;Qdfj)7AB3ZI)aVXpNvHH3CVCiWqR@1x|B3AP|n=90g_feFim`
z5bEr+g5X7^Tmk2SNlJO(dt4^`f7<_G1>W5PRjP4CMMZotQBn6d=vYt_h`WRmb((A>
zOiWA!W;KGpeeBUP>yB`?>Y={apYVFI7-j$E?J=h*gA$o=I{p-7NfXA1qzA{U?A_JS
zz(%{~KFHNlQrU|~-}CkLJ=EGK|JQNSLYgoATN9v?9KA+&aG3HDxZ%Aspros`^uCjm
zQ*_lf9b)-6$}>h(AD0V`Zk-NqmATk@8qnALfTR((N}_U{Z1kam+bZt`+S=kJN9^eZ
z&BkvM@`pzG&aE8pJZRjy?Pt78suno{+Kn2V-QC@ZS{r~$F8jlsVmF_!lFA4Kf=dLf
zfrp%Cm6Kp*z4b(ZOXEh2gt^w^!~I?TGP5S%%KUu%Ik;H)<%%s)Q;ujA#Koh1Hs(3jDZhQ4m{{K2-gbObX)KklKIziI@+@YMGhRiO
zn_vf5+S=UQ&l{IP4UCNVcTVpBVc;RR3MV(baW)F1{eag
z_TP=yN_l9f<2Q}qz@?`ma#u;wq2V36NlK_8WhqW6=4Vygy{PKGRB@*!D2R_TEKAY>
zhi}Xivh=3b0-rtP);AizwN+?A|MMpaahx*2v8sbU#aIRK?
zBuW4%umfNTGCfD_Ny_zY#DjkQQj@wW6fqvTwJE-~|*MN$OG#afcMsr=-^)YGS@w|0%F2qvwZLXjK_|*x=eio8$x%^J
zfI=iHyKdR
z`~L3^C+fd@<&-^29gGpl5&^IJ-bC&u=%Z-A1Ny9G{OKLo6z!`z>069YI7CB2gY*9wdO323l
z?99)}ne9dOxiaG~(6ZfaGeSHl|F1jikMAVla_ud9tWg641MXAV3gI@YTKf9K5q*7q
zWek>4F`J3j-3bTvD49BU503{Tm~oquCcBXj)(DX@Y=*2~I@rnspX6b>KhWsh;i9rY
zd*LsTSU5O*hk0uk3{0u+`Rr^uJzW60?~D%boGQ?OOZfDP4On`IaX8nBYUG$y1dMC9
z`N*F)9{2UDrp=bk6j4J?{weX{DW1eGH-mn8V(O4Y{yjj
zpu<++FkH*gCG70%;_-q1eu4v06Qdk^CeGaaR?;7Oqv&$Xu-AKc0&a7EcS8e)N#h{g
zf!o8es(b5eYinuoeEM?Qkund{)6>J0>%Y6Cd6fcO7WE4N4kodCsdWalqaX?-`2RLh?vsD()*+CuZ~qo&fPc9C?D*FUe;eiN|8wzw!)mp@u_cUNLOO@`8k1-ds33l)fwxK00Q_ZfVO6seuhFgU2pY}nPo{p5!#j`
zAPdk9C7&*LG};_4g$5r4X`2=PP6MLd8n@V%s**d&Pq+$ai+2x3gRJu#_g)ZHAMI?{
zv;;&i$p9>U1q_)LvCKa-I?J(q!@d-)+E3VYE6{OhS&{+D#a>49s{9=3@EI85US@9_syX-0x4f3^RPcxHPKP>
zV6&g7484puMzkcU=L7PhB02@IqE8$H^sXz-tC`KfakjX7dNy|%`Mp2`C7X{x4Zju3
zHE#BYTzPqUkx&`Rxmy3Y)j`vm7#s&Qq|d0I^(*uUztfO`%U6PRU!H6IGyj*MqI{Z#
zh2_DEaD70a#v1`(=tD;UIyf3M`|l<~CwK@YPC=wGyw$q9mzOjqNl-;gD&4FW48s;W
zGS{8xv_c^4)}q6pEO9Ei^R~+?Y|xTdXIwcB?&3;YNE55uJ&kWvaxcCg3T$K8DCJO1
zh|nR)f{M%I_TA?}0i+Cls=bBy({PF%4*VOJt(o`EOqe;ly*OOHWj0FsOa;yuuK%K&
zhxSoK`OJ3YX3g|(BqoU|QPBL*x%2oJV1JtE=TN)%L#1LEW!y<7J)n9UJ@TU`C&!$u?Qx-p6W^$E6bm3Rher__T1azT?QLB|puzD?!3%rHME>%yIb@
z3uZ`Q{sU!zOU1S9xQ%YWS(1^zVzkvI=U#w|>hKu{DJdyt^j_w`UpliCHo1;!N~H%b
zpkvj2In^_yR~y~R0F%o3u@b&veD&D*kAybHs!I{RfxByGqY|!)*xZb05d7-5)nXX8Y80AL0l6ds9oU-VMi1Dw$ANn{st&*WiRdcmKv~E?>^sb>{On$kte>=wg
zo(^AfbhnlUjSXC{NG$Min@qvkdxg
zKUvE3fo^V(%S6rIgy;9~Vip9RZy29AJ}&*C5wMo1RIt{?K(Q|;a`ZVVfYk;k1xWtU
ziRDF8i4}q_fqZuXhjd-2S|ycttiqv}gL40IP3^K0kgR%02Z;?Y@H)X63&u;uV40x2
zrw4e!i{mkm*q4}c5-I?h*SEpLbG6PY`zqoVGBPr2o3r{M}daI>Q`rXcbA!)~DSPH6DE8qNX(`$>Sxkkml||R-_$X5zMA@G88g^
zjbqHtVzBH{`q<)SW%ie4%D^--hQq=UDkB|Vzkc099e(Za-#7&al_iQr=;yF`@nlie
zgqv4mHj`j^g|TJ-eBt*x>S;<3clR`If-~G0NQRYC8+)YQ|R8;qY%(<&Br>
zW^nUL`gy8Izl^mDZC>wgKg!^ie5_Ya)YyH?9zhKZ4vOVeRBZ5Jk}RPI)_{AGb#N~&
zETn)uO0SXMw-46cLpElavVPlAAT>tX5H163zSa;o6Ezz*z{l{n_tpW?xs#2Uq~YD>
zmOPMs;Eq=@gd0OApq=F)knHbwQ}sMHy~W}xqKa?RDhZpf#Um{$S~+M$x(ZJXn39Jp
z`2M^|Nf}^<<11@i?-I{03u}j&a1z{r!$2O(7JvLobre7jopdkCzr9-69`}0h-o4CN
z_bjv$N2Ic^I<6)HcD4irR7G{`H%;qBWrGg)wIg7*a9>R=Bish6Sq3!QxvqFD&8RKV
z9j>DUJel$7$IH`eHU+i|zzqi`NesaA7?kBviLCcvp>8U#Z^hp(A)XF@BIyRwN<$4e
zsyp0=o;8#AQv5wiN8!H6-Ex?lO`I@qiG9hI^bLa`9X{L*
zUvvnOmqPj8V%bUl&*e{hlHsqFoKXf>7n*hOVKgR&CObZb!nG7^tb=PnvgG!3&h_V>)6~=Atq)+Ba6do4
z;plj-Osp+Hs7=S|N`~1R(+{T$pWGtFBTDP$JImLBK6f($W=3r(bIBVbQKQN2?^Rq`
zXR=~9t<-wy#od|1g%!=e1H?TMT1>DrsD3iya{al|U2@x#Wsvz3f+wWzkuSQ|jmsy@
z6PA{Gwuwag#}WD%hUin>!VWy{&s-HUiV#
zFpSgBja}2dfbIl-+Y>hp-cRrEjo1C_SN2;m#oDCj7?N~~bSl-)*H;dda}b%Xm4Yfw
zCE((urkR65{`oVz&-$)E=X2*k-{#{ah1|96&CMtLG!(WF`7;->bFSg4g?@bRuV-TE
zmC_r|eV0a_g@85v$}n4Z{kgmupcED?j>i9%mDNFy%sVwDrTXM&ccyOV`XIZXpD>Y3
z<|@LfM9g53z7r3e?WrKTqpov->iYfQtgI{u_Dr;XD7C;cfiNO5#}xDL*w`2b*EBTv
zajp4Gx0(nLYg7{jCg?3XQ5+AzI(MARJhfu{-l8os=R?!UYtP?%77K@e{;^D$NmUg<
zLMBChB|{lzVXY!SQT9Fg7L@Itf?@7Gj<6k=-v0OeUf~BK6Tt*MZkoQ%Iaj8qK|q0&
z5=>O(oWwAkeJXeYA8p2a{rP(#*+$#q^$#OUmN3QO#ArEr2?=jFko9aqhF;^WK+l|O
z7{nICfbGF=dHGkGoA;HJPLNaN%s5NjPL>anNF_@!q*XBJwE*rbE1iINP_m;jS_
zo-LPGp!|>usF$yz6Jl+_ma;{`)TQ`Z1|(a2(Bn55t$DG-a;54VmgEvOpnONkdZ_y_P-Q`DaA{+YuOZqpB2niJ{w;L~)@^SDzop;FP@gp}GxB8Hi?={k
zw*tFZwj_7)x{RJ<1{ik_unsva!8UW)oFibrLCom|dZG`U{`rkvHBeC;*~%1L0fLc3
z!a`A5;A0?(xq(lUiKBh`6w1?#XVt)gPxGU3?(l
zp?RRYQx{kt;_E52kWOvAwyXDu7h5wMr@cJO>t7lI)455t#qqB{KmG<2?cMhR
zd$}L*ZqxKGYWwyhu%784l||pd;6&DJ%uO???Hd3HRfn~3GSgEhT8bC_IGJS_Mz=Me
z;>AawTps{+S*-!Bdv~+GN*OYN$cYHjh~H28*J^T`G+T9|@&IRgO8v0|fQJC&*TRAW
z$e3*OG0ZCY`uPbKu9W7l{O+@ybswza@_j@Mg?GdTn4}kM{#Ntd=;{t=)~zL==VIl|
zNwreigxO?p^rFDgW4`Bi3ruu*#q!Hhk$%Ti*n*SSQGhb8Cs|j}@Kn?p^6NC1`r2VL
zzsN?R@3DL2-A|2!AECsVf?V)@>0!r}
za^eru0ahzPY{BV^9V#=I*YRxvE?Ew<<8}QxC8$6fdpi7?!Mqt1XMC8dzxkIs*l*hb
zV$ky($gl?&B#_037azZ?5`Z1wa8{^~2Z=7cqeb?XyCsO+b6a!g68QgfTZ)H>H^;vZ
z8jphY|4oB2?u6MtQsSU_=08^y+_^d(|IbaHvHm|7|L?gPe>^;}g^Oe>8Fz71^b{|G
zSOaeSzYs_Y!mnQj43>@8Fy1%TAkL0inma2JNNL8MOV0PRG;4zvy#8~-s#A1Dyu&{~
zhNN(f0k+ngvjNg&HlTLxJPgBU8PRdV?}Xr~K34DpCZWV`79FEu5XJt_QAQDO(%#<6
zsgDN3|AA$S{SSbi;d9E6Q_Tkh)F1y6#Sh@O93=2-5#lRY;Kd#8_jD2`U$XlE#!>*o
zEdBT#-jagFhqsyn#`cdb2Enl>-h-r11%&RVfpcKVs^MQ#!DS%ydZ*LBfV7}AuH8*3
z6N}$SrvA7KIaYA&-$?x5SmA4bzW0yZuhG|@`%bDJa~uo$c^`0NQH-}E`AoDvP&^D4
zN&l>{5-;4EN^$+?iTU1CudQDjpv2Cf=e?lwED-E!;;h13>2b5;Gz%{w0PIg>P_mX?
zxNb7q-(OK)Fa74PnTn3}6ml?PV!P+eC>w7+cLq@}u^QD~1|h#*%);kX{(rIe9$-yo
z(Yi22L`&L~KeF@T7QAiX*=4u+~=p@Y(dNRi$Hqrx~MXo4W!LJ?^Sh6seBC>W|z
zf|LMCi5Tf6)Nt1a=*&6i{`bG<-t(Vx|L3{$%sh@EB>UUn+Izq2ec!b{Q?dqu!bUC`
zY}wpzvJk9!RPLryjsLcZ29Uf`_y6?643mjtQ{JRp?CZzbx5{GfwlC^jaBw0Iwh}Mb
zSnl2O+uW72nQgV=))Rm1R!8`oLdV)Z|AAXFdxV5~NIj*R(`}E29N+IZ38Ql!-
zK^IS5UOnAH7&-0bKxXbnMCn!dIoNa)A(&ncQHNIBa|Xt>5!6#>FQ;a1VIi8W6NDbs
z+%~}>TLY&7Kd5HrBgE~mUd>FTKAUnZ>I6)}CLo>K
zKokIm4*AgoQ<^z`lt@m4awSUc}{i@&=XaF8TvTjpTF~5)=_(c}ox$
zPL}v&t42Rq%t?<)N=i}-O9joYs8fqq%<_zz)f41EKQJ-?IKC)M25@X`w6ObIdpSm3
zp5FQlga{pfv2A|Zb7~t3Re2<-aZx=h0r{P;0~X;O9i@lxzA{CcRY9L_NR9~~pJ$uM
zfh3{tT%g9aBU&{lqpmEOF2Hf}zmGeyfkhjkIJY0ZPYo<7gjRtUIHSVMvBSS}l!;xF
zjaUEh%&zvNXx!n^V{p1?REfr=LP=UZd!Cx#m^#~is4=sXttl$%{QBNVb762Fh|~)J
z;mg$2)OJTbvwwZYk|Q^NZ{PU?Zy(W@8-Hr~P}`oMD?0uVDBelW>DT-PTgB8*xoJXZ
zctU7&+U>tKQS`%9k0r)xJ~(Fxz+j