+
-
-Defining the Workflow
+
+Defining the Workflow
We now define the modelling workflow, which consists of a
preprocessing step, a model specification, and the fitting process.
-
1. Preprocessing with a Recipe
+1. Preprocessing with a Recipe
-
+
# Define the recipe
resistance_recipe_time <- recipe ( res_AMX ~ year + gramstain , data = data_time ) %>%
step_dummy ( gramstain , one_hot = TRUE ) %>% # Convert categorical to numerical
@@ -784,10 +566,10 @@ variable.
-
2. Specifying the Model
+2. Specifying the Model
We use a linear regression model to predict resistance trends.
-
+
# Define the linear regression model
lm_model <- linear_reg ( ) %>%
set_engine ( "lm" ) # Use linear regression
@@ -806,10 +588,10 @@ engine.
-
3. Building the Workflow
+3. Building the Workflow
We combine the preprocessing recipe and model into a workflow.
-
+
# Create workflow
resistance_workflow_time <- workflow ( ) %>%
add_recipe ( resistance_recipe_time ) %>%
@@ -834,12 +616,12 @@ engine.
-
-Training and Evaluating the Model
+
+Training and Evaluating the Model
We split the data into training and testing sets, fit the model, and
evaluate performance.
-
+
# Split the data
set.seed ( 123 )
data_split_time <- initial_split ( data_time , prop = 0.8 )
@@ -880,11 +662,11 @@ sets.
-
-Visualising Predictions
+
+Visualising Predictions
We plot resistance trends over time for amoxicillin.
-
+
library ( ggplot2 )
# Plot actual vs predicted resistance over time
@@ -895,10 +677,10 @@ sets.
x = "Year" ,
y = "Resistance Proportion" ) +
theme_minimal ( )
-
+
Additionally, we can visualise resistance trends in
ggplot2
and directly add linear models there:
-
+
ggplot ( data_time , aes ( x = year , y = res_AMX , color = gramstain ) ) +
geom_line ( ) +
labs ( title = "AMX Resistance Trends" ,
@@ -909,11 +691,11 @@ sets.
formula = y ~ x ,
alpha = 0.25 ) +
theme_minimal ( )
-
+
-
-Conclusion
+
+Conclusion
In this example, we demonstrated how to analyze AMR trends over time
using tidymodels
. By aggregating resistance rates by year
diff --git a/articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-14-1.png b/articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-14-1.png
index a31617e3c..0116fcb2a 100644
Binary files a/articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-14-1.png and b/articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-14-1.png differ
diff --git a/articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-21-1.png b/articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-15-1.png
similarity index 100%
rename from articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-21-1.png
rename to articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-15-1.png
diff --git a/articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-20-1.png b/articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-20-1.png
deleted file mode 100644
index 0116fcb2a..000000000
Binary files a/articles/AMR_with_tidymodels_files/figure-html/unnamed-chunk-20-1.png and /dev/null differ
diff --git a/articles/EUCAST.html b/articles/EUCAST.html
index 08fa8eefe..9accc69e2 100644
--- a/articles/EUCAST.html
+++ b/articles/EUCAST.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/articles/PCA.html b/articles/PCA.html
index 7a2f6331a..86ef7dcb3 100644
--- a/articles/PCA.html
+++ b/articles/PCA.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/articles/WHONET.html b/articles/WHONET.html
index 6e2f904c7..d96c02db5 100644
--- a/articles/WHONET.html
+++ b/articles/WHONET.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/articles/WISCA.html b/articles/WISCA.html
index bdb948122..f8a61af71 100644
--- a/articles/WISCA.html
+++ b/articles/WISCA.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/articles/datasets.html b/articles/datasets.html
index b5b98f119..b2a5dd83f 100644
--- a/articles/datasets.html
+++ b/articles/datasets.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -80,7 +80,7 @@
-
-
AMR 3.0.0.9021
-
This is primarily a bugfix release, though we added one nice feature too.
-
-
New
-
Integration with the tidymodels framework to allow seamless use of MIC and SIR data in modelling pipelines via recipes
-
-
-
-
Changed
-
Fixed a bug in antibiogram()
for when no antimicrobials are set
-Fixed a bug in antibiogram()
to allow column names containing the +
character (#222 )
-Fixed a bug in as.ab()
for antimicrobial codes with a number in it if they are preceded by a space
-Fixed a bug in eucast_rules()
for using specific custom rules
-Fixed a bug in as.sir()
to allow any tidyselect language (#220 )
-Fixed a bug in as.sir()
to pick right breakpoint when uti = FALSE
(#216 )
-Fixed a bug in ggplot_sir()
when using combine_SI = FALSE
(#213 )
-Fixed a bug the antimicrobials
data set to remove statins (#229 )
-Fixed a bug in mdro()
to make sure all genes specified in arguments are acknowledges
-Fixed ATC J01CR05 to map to piperacillin/tazobactam rather than piperacillin/sulbactam (#230 )
-Fixed all plotting to contain a separate colour for SDD (susceptible dose-dependent) (#223 )
-Fixed some specific Dutch translations for antimicrobials
-Added all reasons in verbose output of mdro()
(#227 )
-Added names
to age_groups()
so that custom names can be given (#215 )
-Added note to as.sir()
to make it explicit when higher-level taxonomic breakpoints are used (#218 )
-Added antibiotic codes from the Comprehensive Antibiotic Resistance Database (CARD) to the antimicrobials
data set (#225 )
-Updated Fosfomycin to be of antibiotic class ‘Phosphonics’ (#225 )
-Updated random_mic()
and random_disk()
to set skewedness of the distribution and allow multiple microorganisms
-
-
AMR 3.0.0 CRAN release: 2025-06-02
This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the University of Prince Edward Island’s Atlantic Veterinary College , Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change.
diff --git a/pkgdown.yml b/pkgdown.yml
index 378cf4496..77e6210e7 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
PCA: PCA.html
WHONET: WHONET.html
WISCA: WISCA.html
-last_built: 2025-09-03T10:17Z
+last_built: 2025-09-10T14:26Z
urls:
reference: https://amr-for-r.org/reference
article: https://amr-for-r.org/articles
diff --git a/reference/AMR-deprecated.html b/reference/AMR-deprecated.html
index d21e1e863..4ccdb3191 100644
--- a/reference/AMR-deprecated.html
+++ b/reference/AMR-deprecated.html
@@ -7,7 +7,7 @@
AMR (for R)
-
3.0.0.9021
+
3.0.0.9029
diff --git a/reference/AMR-options.html b/reference/AMR-options.html
index 03772fd67..ad743526d 100644
--- a/reference/AMR-options.html
+++ b/reference/AMR-options.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/AMR.html b/reference/AMR.html
index cfafdb16d..b87773d24 100644
--- a/reference/AMR.html
+++ b/reference/AMR.html
@@ -21,7 +21,7 @@ The AMR package is available in English, Arabic, Bengali, Chinese, Czech, Danish
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/WHOCC.html b/reference/WHOCC.html
index 3eb455e0e..b99f57a48 100644
--- a/reference/WHOCC.html
+++ b/reference/WHOCC.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/WHONET.html b/reference/WHONET.html
index 3b83205c9..6099d8dfa 100644
--- a/reference/WHONET.html
+++ b/reference/WHONET.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/ab_from_text.html b/reference/ab_from_text.html
index 9391d4dc1..e952e8b62 100644
--- a/reference/ab_from_text.html
+++ b/reference/ab_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/ab_property.html b/reference/ab_property.html
index 718528e0c..84b502cff 100644
--- a/reference/ab_property.html
+++ b/reference/ab_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/add_custom_antimicrobials.html b/reference/add_custom_antimicrobials.html
index 96a1ac289..fdbf30085 100644
--- a/reference/add_custom_antimicrobials.html
+++ b/reference/add_custom_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/add_custom_microorganisms.html b/reference/add_custom_microorganisms.html
index 26de3ed3f..d11a16ef2 100644
--- a/reference/add_custom_microorganisms.html
+++ b/reference/add_custom_microorganisms.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/age.html b/reference/age.html
index 2f7d5f64a..7ac8a78e0 100644
--- a/reference/age.html
+++ b/reference/age.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -112,16 +112,16 @@
df
#> birth_date age age_exact age_at_y2k
-#> 1 1980-02-27 45 45.51507 19
-#> 2 1953-07-26 72 72.10685 46
-#> 3 1949-09-02 76 76.00274 50
-#> 4 1986-08-03 39 39.08493 13
-#> 5 1932-11-19 92 92.78904 67
-#> 6 1949-03-30 76 76.43014 50
-#> 7 1996-06-23 29 29.19726 3
-#> 8 1963-09-16 61 61.96438 36
-#> 9 1952-05-16 73 73.30137 47
-#> 10 1952-11-14 72 72.80274 47
+#> 1 1980-02-27 45 45.53425 19
+#> 2 1953-07-26 72 72.12603 46
+#> 3 1949-09-02 76 76.02192 50
+#> 4 1986-08-03 39 39.10411 13
+#> 5 1932-11-19 92 92.80822 67
+#> 6 1949-03-30 76 76.44932 50
+#> 7 1996-06-23 29 29.21644 3
+#> 8 1963-09-16 61 61.98356 36
+#> 9 1952-05-16 73 73.32055 47
+#> 10 1952-11-14 72 72.82192 47
On this page
diff --git a/reference/age_groups.html b/reference/age_groups.html
index 8a28f503a..6f2342c7b 100644
--- a/reference/age_groups.html
+++ b/reference/age_groups.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/all_mic.html b/reference/all_mic.html
deleted file mode 100644
index ba0c13dee..000000000
--- a/reference/all_mic.html
+++ /dev/null
@@ -1,8 +0,0 @@
-
-
-
-
-
-
-
-
diff --git a/reference/all_mic_predictors.html b/reference/all_mic_predictors.html
deleted file mode 100644
index ba0c13dee..000000000
--- a/reference/all_mic_predictors.html
+++ /dev/null
@@ -1,8 +0,0 @@
-
-
-
-
-
-
-
-
diff --git a/reference/all_sir.html b/reference/all_sir.html
deleted file mode 100644
index ba0c13dee..000000000
--- a/reference/all_sir.html
+++ /dev/null
@@ -1,8 +0,0 @@
-
-
-
-
-
-
-
-
diff --git a/reference/all_sir_predictors.html b/reference/all_sir_predictors.html
deleted file mode 100644
index ba0c13dee..000000000
--- a/reference/all_sir_predictors.html
+++ /dev/null
@@ -1,8 +0,0 @@
-
-
-
-
-
-
-
-
diff --git a/reference/amr-tidymodels.html b/reference/amr-tidymodels.html
deleted file mode 100644
index 972b6c810..000000000
--- a/reference/amr-tidymodels.html
+++ /dev/null
@@ -1,220 +0,0 @@
-
-AMR Extensions for Tidymodels — amr-tidymodels • AMR (for R)
- Skip to contents
-
-
-
-
-
-
-
-
-
This family of functions allows using AMR-specific data types such as <mic>
and <sir>
inside tidymodels
pipelines.
-
-
-
-
Usage
-
all_mic ( )
-
-all_mic_predictors ( )
-
-all_sir ( )
-
-all_sir_predictors ( )
-
-step_mic_log2 ( recipe , ... , role = NA , trained = FALSE , columns = NULL ,
- skip = FALSE , id = recipes :: rand_id ( "mic_log2" ) )
-
-step_sir_numeric ( recipe , ... , role = NA , trained = FALSE , columns = NULL ,
- skip = FALSE , id = recipes :: rand_id ( "sir_numeric" ) )
-
-
-
-
Arguments
-
-
-
recipe
-A recipe object. The step will be added to the sequence of
-operations for this recipe.
-
-
-...
-One or more selector functions to choose variables for this step.
-See selections()
for more details.
-
-
-role
-Not used by this step since no new variables are created.
-
-
-trained
-A logical to indicate if the quantities for preprocessing have
-been estimated.
-
-
-skip
-A logical. Should the step be skipped when the recipe is baked by
-bake()
? While all operations are baked when prep()
is run, some
-operations may not be able to be conducted on new data (e.g. processing the
-outcome variable(s)). Care should be taken when using skip = TRUE
as it
-may affect the computations for subsequent operations.
-
-
-id
-A character string that is unique to this step to identify it.
-
-
-
-
Details
-
You can read more in our online AMR with tidymodels introduction .
-
Tidyselect helpers include:
Pre-processing pipeline steps include:
step_mic_log2()
to convert MIC columns to numeric (via as.numeric()
) and apply a log2 transform, to be used with all_mic_predictors()
-step_sir_numeric()
to convert SIR columns to numeric (via as.numeric()
), to be used with all_sir_predictors()
: "S"
= 1, "I"
/"SDD"
= 2, "R"
= 3. All other values are rendered NA
. Keep this in mind for further processing, especially if the model does not allow for NA
values.
-These steps integrate with recipes::recipe()
and work like standard preprocessing steps. They are useful for preparing data for modelling, especially with classification models.
-
-
-
-
-
Examples
-
if ( require ( "tidymodels" ) ) {
-
- # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
- # Presence of ESBL genes was predicted based on raw MIC values.
-
-
- # example data set in the AMR package
- esbl_isolates
-
- # Prepare a binary outcome and convert to ordered factor
- data <- esbl_isolates %>%
- mutate ( esbl = factor ( esbl , levels = c ( FALSE , TRUE ) , ordered = TRUE ) )
-
- # Split into training and testing sets
- split <- initial_split ( data )
- training_data <- training ( split )
- testing_data <- testing ( split )
-
- # Create and prep a recipe with MIC log2 transformation
- mic_recipe <- recipe ( esbl ~ . , data = training_data ) %>%
-
- # Optionally remove non-predictive variables
- remove_role ( genus , old_role = "predictor" ) %>%
-
- # Apply the log2 transformation to all MIC predictors
- step_mic_log2 ( all_mic_predictors ( ) ) %>%
-
- # And apply the preparation steps
- prep ( )
-
- # View prepped recipe
- mic_recipe
-
- # Apply the recipe to training and testing data
- out_training <- bake ( mic_recipe , new_data = NULL )
- out_testing <- bake ( mic_recipe , new_data = testing_data )
-
- # Fit a logistic regression model
- fitted <- logistic_reg ( mode = "classification" ) %>%
- set_engine ( "glm" ) %>%
- fit ( esbl ~ . , data = out_training )
-
- # Generate predictions on the test set
- predictions <- predict ( fitted , out_testing ) %>%
- bind_cols ( out_testing )
-
- # Evaluate predictions using standard classification metrics
- our_metrics <- metric_set ( accuracy , kap , ppv , npv )
- metrics <- our_metrics ( predictions , truth = esbl , estimate = .pred_class )
-
- # Show performance
- metrics
-}
-#> Loading required package: tidymodels
-#> ── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
-#> ✔ broom 1.0.9 ✔ rsample 1.3.1
-#> ✔ dials 1.4.1 ✔ tibble 3.3.0
-#> ✔ infer 1.0.9 ✔ tidyr 1.3.1
-#> ✔ modeldata 1.5.1 ✔ tune 2.0.0
-#> ✔ parsnip 1.3.3 ✔ workflows 1.3.0
-#> ✔ purrr 1.1.0 ✔ workflowsets 1.1.1
-#> ✔ recipes 1.3.1 ✔ yardstick 1.3.2
-#> ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
-#> ✖ purrr ::discard() masks scales ::discard()
-#> ✖ dplyr ::filter() masks stats ::filter()
-#> ✖ dplyr ::lag() masks stats ::lag()
-#> ✖ recipes ::step() masks stats ::step()
-#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
-#> # A tibble: 4 × 3
-#> .metric .estimator .estimate
-#> <chr> <chr> <dbl>
-#> 1 accuracy binary 0.936
-#> 2 kap binary 0.872
-#> 3 ppv binary 0.925
-#> 4 npv binary 0.948
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/reference/antibiogram.html b/reference/antibiogram.html
index f95599e98..d12c016b7 100644
--- a/reference/antibiogram.html
+++ b/reference/antibiogram.html
@@ -9,7 +9,7 @@ Adhering to previously described approaches (see Source) and especially the Baye
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -587,9 +587,9 @@ Adhering to previously described approaches (see Source) and especially the Baye
#> # Type: WISCA with 95% CI
#> `Syndromic Group` `Piperacillin/tazobactam` Piperacillin/tazobactam + Gentam…¹
#> <chr> <chr> <chr>
-#> 1 Clinical 73.6% (68.3-78.8%) 92.3% (90.8-93.8%)
-#> 2 ICU 57.2% (49.8-65.1%) 84.9% (81.8-87.8%)
-#> 3 Outpatient 57.1% (47.2-66.8%) 74.4% (69-79.6%)
+#> 1 Clinical 73.4% (67.6-78.6%) 92.4% (90.6-93.7%)
+#> 2 ICU 57.4% (49.7-65.6%) 85% (82.1-87.6%)
+#> 3 Outpatient 56.9% (46.9-66.7%) 74.4% (69-79.7%)
#> # ℹ abbreviated name: ¹`Piperacillin/tazobactam + Gentamicin`
#> # ℹ 1 more variable: `Piperacillin/tazobactam + Tobramycin` <chr>
#> # Use `ggplot2::autoplot()` or base R `plot()` to create a plot of this antibiogram,
@@ -614,9 +614,9 @@ Adhering to previously described approaches (see Source) and especially the Baye
#>
#> |Syndromic Group |Piperacillin/tazobactam |
#> |:---------------|:-----------------------|
-#> |Clinical |73.4% (67.8-78.8%) |
-#> |ICU |57.2% (49.6-65.3%) |
-#> |Outpatient |56.9% (47.1-66.9%) |
+#> |Clinical |73.6% (68.4-79%) |
+#> |ICU |57.4% (49.7-65.4%) |
+#> |Outpatient |57% (47.2-66.7%) |
# Generate plots with ggplot2 or base R --------------------------------
diff --git a/reference/antimicrobial_selectors.html b/reference/antimicrobial_selectors.html
index 4a66b89da..51a1699ce 100644
--- a/reference/antimicrobial_selectors.html
+++ b/reference/antimicrobial_selectors.html
@@ -17,7 +17,7 @@ my_data_with_all_these_columns %>%
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -670,9 +670,6 @@ my_data_with_all_these_columns %>%
#> Loading required package: data.table
#>
#> Attaching package: ‘data.table’
-#> The following object is masked from ‘package:purrr’:
-#>
-#> transpose
#> The following objects are masked from ‘package:dplyr’:
#>
#> between, first, last
diff --git a/reference/antimicrobials.html b/reference/antimicrobials.html
index 59d6a180a..aa00d9c26 100644
--- a/reference/antimicrobials.html
+++ b/reference/antimicrobials.html
@@ -9,7 +9,7 @@ The antibiotics data set has been renamed to antimicrobials. The old name will b
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/as.ab.html b/reference/as.ab.html
index 75141737d..5bc2bffd9 100644
--- a/reference/as.ab.html
+++ b/reference/as.ab.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/as.av.html b/reference/as.av.html
index 42dc686ea..b2f2d037e 100644
--- a/reference/as.av.html
+++ b/reference/as.av.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/as.disk.html b/reference/as.disk.html
index 7955b60a5..a843e117f 100644
--- a/reference/as.disk.html
+++ b/reference/as.disk.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/as.mic.html b/reference/as.mic.html
index e049117fc..30d7ec701 100644
--- a/reference/as.mic.html
+++ b/reference/as.mic.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/as.mo.html b/reference/as.mo.html
index c83cb813a..8f0f7e28f 100644
--- a/reference/as.mo.html
+++ b/reference/as.mo.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/as.sir.html b/reference/as.sir.html
index ae3868b44..380cbe977 100644
--- a/reference/as.sir.html
+++ b/reference/as.sir.html
@@ -9,7 +9,7 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -415,10 +415,10 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
#> # A tibble: 4 × 18
#> datetime index method ab_given mo_given host_given input_given
#> <dttm> <int> <chr> <chr> <chr> <chr> <chr>
-#> 1 2025-09-03 10:18:07 1 MIC amoxicillin Escherich… human 8
-#> 2 2025-09-03 10:18:07 1 MIC cipro Escherich… human 0.256
-#> 3 2025-09-03 10:18:07 1 DISK tobra Escherich… human 16
-#> 4 2025-09-03 10:18:08 1 DISK genta Escherich… human 18
+#> 1 2025-09-10 14:27:37 1 MIC amoxicillin Escherich… human 8
+#> 2 2025-09-10 14:27:37 1 MIC cipro Escherich… human 0.256
+#> 3 2025-09-10 14:27:38 1 DISK tobra Escherich… human 16
+#> 4 2025-09-10 14:27:38 1 DISK genta Escherich… human 18
#> # ℹ 11 more variables: ab <ab>, mo <mo>, host <chr>, input <chr>,
#> # outcome <sir>, notes <chr>, guideline <chr>, ref_table <chr>, uti <lgl>,
#> # breakpoint_S_R <chr>, site <chr>
@@ -619,7 +619,7 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
# For CLEANING existing SIR values -------------------------------------
as.sir ( c ( "S" , "SDD" , "I" , "R" , "NI" , "A" , "B" , "C" ) )
-#> Warning: in `as.sir()` : 3 results in index '21' truncated (38%) that were invalid
+#> Warning: in `as.sir()` : 3 results in index '20' truncated (38%) that were invalid
#> antimicrobial interpretations: "A", "B", and "C"
#> Class 'sir'
#> [1] S SDD I R NI <NA> <NA> <NA>
diff --git a/reference/atc_online.html b/reference/atc_online.html
index 285951fd9..0b5acd459 100644
--- a/reference/atc_online.html
+++ b/reference/atc_online.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/av_from_text.html b/reference/av_from_text.html
index 5b2f6ef95..a490752ca 100644
--- a/reference/av_from_text.html
+++ b/reference/av_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/av_property.html b/reference/av_property.html
index d04d680af..f002bf250 100644
--- a/reference/av_property.html
+++ b/reference/av_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/availability.html b/reference/availability.html
index 12ebc9857..ae87b69f5 100644
--- a/reference/availability.html
+++ b/reference/availability.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html
index e8e002ee8..640cff338 100644
--- a/reference/bug_drug_combinations.html
+++ b/reference/bug_drug_combinations.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/clinical_breakpoints.html b/reference/clinical_breakpoints.html
index f1966665b..c74ae8d24 100644
--- a/reference/clinical_breakpoints.html
+++ b/reference/clinical_breakpoints.html
@@ -21,7 +21,7 @@ Use as.sir() to transform MICs or disks measurements to SIR values."> AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/count.html b/reference/count.html
index c19e96328..b89e8d0fb 100644
--- a/reference/count.html
+++ b/reference/count.html
@@ -9,7 +9,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html
index 3f94d58ce..19c1b9d68 100644
--- a/reference/custom_eucast_rules.html
+++ b/reference/custom_eucast_rules.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/custom_mdro_guideline.html b/reference/custom_mdro_guideline.html
index bc7bcc517..41a084e5f 100644
--- a/reference/custom_mdro_guideline.html
+++ b/reference/custom_mdro_guideline.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/dosage.html b/reference/dosage.html
index 92934d7d7..14108808a 100644
--- a/reference/dosage.html
+++ b/reference/dosage.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/esbl_isolates.html b/reference/esbl_isolates.html
deleted file mode 100644
index 55894e0b1..000000000
--- a/reference/esbl_isolates.html
+++ /dev/null
@@ -1,112 +0,0 @@
-
-Data Set with 500 ESBL Isolates — esbl_isolates • AMR (for R)
- Skip to contents
-
-
-
-
-
-
-
-
-
A data set containing 500 microbial isolates with MIC values of common antibiotics and a binary esbl
column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with tidymodels .
-
-
-
-
-
-
-
A tibble with 500 observations and 19 variables:
esbl
Logical indicator if the isolate is ESBL-producing
-genus
Genus of the microorganism
-AMC:COL
MIC values for 17 antimicrobial agents, transformed to class mic
(see as.mic()
)
-
-
-
-
-
Examples
-
esbl_isolates
-#> # A tibble: 500 × 19
-#> esbl genus AMC AMP TZP CXM FOX CTX CAZ GEN TOB TMP SXT
-#> <lgl> <chr> <mic> <mic> <mic> <mic> <mic> <mic> <mic> <mic> <mic> <mic> <mic>
-#> 1 FALSE Esch… 32 32 4 64 64 8.00 8.00 1 1 16.0 20
-#> 2 FALSE Esch… 32 32 4 64 64 4.00 8.00 1 1 16.0 320
-#> 3 FALSE Esch… 4 2 64 8 4 8.00 0.12 16 16 0.5 20
-#> 4 FALSE Kleb… 32 32 16 64 64 8.00 8.00 1 1 0.5 20
-#> 5 FALSE Esch… 32 32 4 4 4 0.25 2.00 1 1 16.0 320
-#> 6 FALSE Citr… 32 32 16 64 64 64.00 32.00 1 1 0.5 20
-#> 7 FALSE Morg… 32 32 4 64 64 16.00 2.00 1 1 0.5 20
-#> 8 FALSE Prot… 16 32 4 1 4 8.00 0.12 1 1 16.0 320
-#> 9 FALSE Ente… 32 32 8 64 64 32.00 4.00 1 1 0.5 20
-#> 10 FALSE Citr… 32 32 32 64 64 8.00 64.00 1 1 16.0 320
-#> # ℹ 490 more rows
-#> # ℹ 6 more variables: NIT <mic>, FOS <mic>, CIP <mic>, IPM <mic>, MEM <mic>,
-#> # COL <mic>
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/reference/eucast_rules.html b/reference/eucast_rules.html
index 97a39282a..621620dd8 100644
--- a/reference/eucast_rules.html
+++ b/reference/eucast_rules.html
@@ -9,7 +9,7 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/example_isolates.html b/reference/example_isolates.html
index 7fdb3a784..d7701d890 100644
--- a/reference/example_isolates.html
+++ b/reference/example_isolates.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/example_isolates_unclean.html b/reference/example_isolates_unclean.html
index db32682be..65918de85 100644
--- a/reference/example_isolates_unclean.html
+++ b/reference/example_isolates_unclean.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/export_ncbi_biosample.html b/reference/export_ncbi_biosample.html
index dc41152d7..818921731 100644
--- a/reference/export_ncbi_biosample.html
+++ b/reference/export_ncbi_biosample.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/first_isolate.html b/reference/first_isolate.html
index 8207bc2e3..6ab3c654c 100644
--- a/reference/first_isolate.html
+++ b/reference/first_isolate.html
@@ -9,7 +9,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/g.test.html b/reference/g.test.html
index 68adb2d5e..298ddf302 100644
--- a/reference/g.test.html
+++ b/reference/g.test.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/get_episode.html b/reference/get_episode.html
index 93b72547d..c129fb541 100644
--- a/reference/get_episode.html
+++ b/reference/get_episode.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -154,28 +154,28 @@
df <- example_isolates [ sample ( seq_len ( 2000 ) , size = 100 ) , ]
get_episode ( df $ date , episode_days = 60 ) # indices
-#> [1] 43 9 7 14 28 40 49 29 19 27 10 44 18 22 42 12 8 36 13 3 46 5 4 35 38
-#> [26] 16 22 23 16 10 42 13 2 45 18 19 39 32 22 36 40 45 39 40 11 23 25 39 26 23
-#> [51] 25 12 17 23 30 30 34 16 21 37 40 26 11 7 4 16 43 22 47 37 39 31 25 41 1
-#> [76] 45 39 23 32 45 20 22 15 14 13 43 9 38 29 6 48 24 21 23 44 19 31 1 3 33
+#> [1] 17 19 32 7 48 16 36 11 41 30 43 42 3 37 6 42 16 46 12 6 38 15 31 23 44
+#> [26] 35 42 21 10 21 18 22 9 29 40 8 22 14 31 47 18 26 28 18 25 20 11 49 8 27
+#> [51] 50 23 46 3 27 6 31 1 33 10 23 31 11 20 46 13 4 24 4 27 8 48 16 2 20
+#> [76] 35 31 19 33 34 16 14 33 17 46 24 15 17 7 9 39 14 50 5 12 2 45 35 8 28
is_new_episode ( df $ date , episode_days = 60 ) # TRUE/FALSE
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
-#> [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
-#> [25] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
-#> [37] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
-#> [49] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
-#> [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
-#> [73] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
-#> [85] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
-#> [97] FALSE FALSE FALSE TRUE
+#> [13] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
+#> [25] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
+#> [37] FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
+#> [49] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
+#> [61] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
+#> [73] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
+#> [85] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
+#> [97] TRUE FALSE FALSE FALSE
# filter on results from the third 60-day episode only, using base R
df [ which ( get_episode ( df $ date , 60 ) == 3 ) , ]
#> # A tibble: 2 × 46
-#> date patient age gender ward mo PEN OXA FLC AMX
-#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
-#> 1 2002-11-04 304347 62 M Clinical B_ STRPT_ PNMN S NA NA S
-#> 2 2002-10-18 E55128 57 F ICU B_ STPHY_ AURS R NA S R
+#> date patient age gender ward mo PEN OXA FLC AMX
+#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
+#> 1 2002-07-23 F35553 51 M ICU B_ STPHY_ AURS R NA S R
+#> 2 2002-07-23 F35553 51 M ICU B_ STPHY_ AURS R NA S R
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
@@ -209,19 +209,19 @@
arrange ( patient , condition , date )
}
#> # A tibble: 100 × 4
-#> # Groups: patient, condition [96]
+#> # Groups: patient, condition [95]
#> patient date condition new_episode
#> <chr> <date> <chr> <lgl>
-#> 1 022060 2004-05-04 A TRUE
-#> 2 060287 2007-03-11 A TRUE
-#> 3 0E2483 2007-04-06 C TRUE
-#> 4 101305 2006-12-13 A TRUE
-#> 5 141061 2014-10-22 A TRUE
-#> 6 146F70 2009-08-14 A TRUE
-#> 7 15D386 2004-08-01 B TRUE
-#> 8 187841 2008-04-22 C TRUE
-#> 9 195736 2008-08-29 C TRUE
-#> 10 195736 2008-08-29 C FALSE
+#> 1 011307 2011-09-20 B TRUE
+#> 2 011307 2011-09-20 C TRUE
+#> 3 021368 2016-03-25 A TRUE
+#> 4 060287 2007-03-11 B TRUE
+#> 5 078381 2014-07-17 A TRUE
+#> 6 097186 2015-10-28 B TRUE
+#> 7 0DBB93 2003-10-02 A TRUE
+#> 8 0DBF93 2015-12-03 C TRUE
+#> 9 114570 2003-04-22 A TRUE
+#> 10 141061 2014-10-22 C TRUE
#> # ℹ 90 more rows
if ( require ( "dplyr" ) ) {
@@ -235,19 +235,19 @@
arrange ( patient , ward , date )
}
#> # A tibble: 100 × 5
-#> # Groups: ward, patient [91]
-#> ward date patient new_index new_logical
-#> <chr> <date> <chr> <int> <lgl>
-#> 1 ICU 2004-05-04 022060 1 TRUE
-#> 2 Clinical 2007-03-11 060287 1 TRUE
-#> 3 Clinical 2007-04-06 0E2483 1 TRUE
-#> 4 Clinical 2006-12-13 101305 1 TRUE
-#> 5 Clinical 2014-10-22 141061 1 TRUE
-#> 6 Clinical 2009-08-14 146F70 1 TRUE
-#> 7 ICU 2004-08-01 15D386 1 TRUE
-#> 8 Clinical 2008-04-22 187841 1 TRUE
-#> 9 Clinical 2008-08-29 195736 1 TRUE
-#> 10 Clinical 2008-08-29 195736 1 FALSE
+#> # Groups: ward, patient [93]
+#> ward date patient new_index new_logical
+#> <chr> <date> <chr> <int> <lgl>
+#> 1 Clinical 2011-09-20 011307 1 TRUE
+#> 2 Clinical 2011-09-20 011307 1 FALSE
+#> 3 Outpatient 2016-03-25 021368 1 TRUE
+#> 4 Clinical 2007-03-11 060287 1 TRUE
+#> 5 ICU 2014-07-17 078381 1 TRUE
+#> 6 Clinical 2015-10-28 097186 1 TRUE
+#> 7 ICU 2003-10-02 0DBB93 1 TRUE
+#> 8 ICU 2015-12-03 0DBF93 1 TRUE
+#> 9 ICU 2003-04-22 114570 1 TRUE
+#> 10 Clinical 2014-10-22 141061 1 TRUE
#> # ℹ 90 more rows
if ( require ( "dplyr" ) ) {
@@ -263,9 +263,9 @@
#> # A tibble: 3 × 5
#> ward n_patients n_episodes_365 n_episodes_60 n_episodes_30
#> <chr> <int> <int> <int> <int>
-#> 1 Clinical 58 14 38 44
-#> 2 ICU 26 7 20 23
-#> 3 Outpatient 7 4 6 7
+#> 1 Clinical 51 12 33 43
+#> 2 ICU 31 11 26 30
+#> 3 Outpatient 11 8 11 11
# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
@@ -283,7 +283,7 @@
identical ( x , y )
}
-#> [1] FALSE
+#> [1] TRUE
# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
@@ -294,19 +294,19 @@
select ( group_vars ( . ) , flag_episode )
}
#> # A tibble: 100 × 4
-#> # Groups: patient, mo, ward [96]
-#> patient mo ward flag_episode
-#> <chr> <mo> <chr> <lgl>
-#> 1 917895 B_ STPHY_ CPTS ICU TRUE
-#> 2 022060 B_ ENTRBC_ CLOC ICU TRUE
-#> 3 C36883 B_ ESCHR_ COLI Clinical TRUE
-#> 4 5DF436 B_ STPHY_ AURS ICU TRUE
-#> 5 971739 B_ STPHY_ CONS Clinical TRUE
-#> 6 488175 B_ ESCHR_ COLI Clinical TRUE
-#> 7 5DB1C8 B_ STPHY_ CPTS Clinical TRUE
-#> 8 BC9909 B_ ENTRBC_ CLOC Clinical TRUE
-#> 9 5B78D5 B_ STPHY_ AURS Clinical TRUE
-#> 10 284FFF B_ STPHY_ EPDR Clinical TRUE
+#> # Groups: patient, mo, ward [95]
+#> patient mo ward flag_episode
+#> <chr> <mo> <chr> <lgl>
+#> 1 690B42 B_ ESCHR_ COLI ICU TRUE
+#> 2 550406 B_ ESCHR_ COLI Outpatient TRUE
+#> 3 F86227 B_ STPHY_ CONS Clinical TRUE
+#> 4 859863 B_ STPHY_ EPDR ICU TRUE
+#> 5 987C84 B_ ESCHR_ COLI Clinical TRUE
+#> 6 E19440 B_ ESCHR_ COLI ICU TRUE
+#> 7 F42C5F B_ MRGNL_ MRGN Clinical TRUE
+#> 8 F54261 B_ STPHY_ AURS Clinical TRUE
+#> 9 5D1690 B_ ESCHR_ COLI Outpatient TRUE
+#> 10 874171 B_ STPHY_ CONS Clinical TRUE
#> # ℹ 90 more rows
# }
diff --git a/reference/ggplot_pca.html b/reference/ggplot_pca.html
index 24e65e190..ead570a9c 100644
--- a/reference/ggplot_pca.html
+++ b/reference/ggplot_pca.html
@@ -7,7 +7,7 @@
AMR (for R)
-
3.0.0.9021
+
3.0.0.9029
diff --git a/reference/ggplot_sir.html b/reference/ggplot_sir.html
index c5c244378..82e578fe9 100644
--- a/reference/ggplot_sir.html
+++ b/reference/ggplot_sir.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/guess_ab_col.html b/reference/guess_ab_col.html
index 10b1b3fb4..b7edb04fd 100644
--- a/reference/guess_ab_col.html
+++ b/reference/guess_ab_col.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/index.html b/reference/index.html
index c70cb0a6c..5b909e374 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -388,12 +388,6 @@
Data Set with 2 000 Example Isolates
- esbl_isolates
-
-
- Data Set with 500 ESBL Isolates
-
-
microorganisms.codes
diff --git a/reference/intrinsic_resistant.html b/reference/intrinsic_resistant.html
index f8d8eda3f..db57c9f24 100644
--- a/reference/intrinsic_resistant.html
+++ b/reference/intrinsic_resistant.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/italicise_taxonomy.html b/reference/italicise_taxonomy.html
index 0dfcf6328..2b9cd972d 100644
--- a/reference/italicise_taxonomy.html
+++ b/reference/italicise_taxonomy.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/join.html b/reference/join.html
index 257fe414c..2c61ab104 100644
--- a/reference/join.html
+++ b/reference/join.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/key_antimicrobials.html b/reference/key_antimicrobials.html
index 6d3971a08..d7603fa9a 100644
--- a/reference/key_antimicrobials.html
+++ b/reference/key_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/kurtosis.html b/reference/kurtosis.html
index 929275862..9d75590c4 100644
--- a/reference/kurtosis.html
+++ b/reference/kurtosis.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -91,9 +91,9 @@
Examples
kurtosis ( rnorm ( 10000 ) )
-#> [1] 3.069947
+#> [1] 3.071712
kurtosis ( rnorm ( 10000 ) , excess = TRUE )
-#> [1] -0.02599697
+#> [1] -0.02774835
On this page
diff --git a/reference/like.html b/reference/like.html
index 53416c0da..03f4a6a72 100644
--- a/reference/like.html
+++ b/reference/like.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -107,8 +107,6 @@
Examples
# data.table has a more limited version of %like%, so unload it:
try ( detach ( "package:data.table" , unload = TRUE ) , silent = TRUE )
-#> Warning: ‘data.table’ namespace cannot be unloaded:
-#> namespace ‘data.table’ is imported by ‘prodlim’ so cannot be unloaded
a <- "This is a test"
b <- "TEST"
diff --git a/reference/mdro.html b/reference/mdro.html
index 5bbb8429e..1cf800e3b 100644
--- a/reference/mdro.html
+++ b/reference/mdro.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/mean_amr_distance.html b/reference/mean_amr_distance.html
index 402a5ab7e..8a2493528 100644
--- a/reference/mean_amr_distance.html
+++ b/reference/mean_amr_distance.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -110,30 +110,30 @@
sir <- random_sir ( 10 )
sir
#> Class 'sir'
-#> [1] R R I R I I S R S I
+#> [1] I I R I R S S S I S
mean_amr_distance ( sir )
-#> [1] 1.1618950 1.1618950 -0.7745967 1.1618950 -0.7745967 -0.7745967
-#> [7] -0.7745967 1.1618950 -0.7745967 -0.7745967
+#> [1] -0.4743416 -0.4743416 1.8973666 -0.4743416 1.8973666 -0.4743416
+#> [7] -0.4743416 -0.4743416 -0.4743416 -0.4743416
mic <- random_mic ( 10 )
mic
#> Class 'mic'
-#> [1] 0.032 0.5 1 >=8 4 0.016 >=8 1 0.004 0.008
+#> [1] 0.004 2 0.002 0.0001 0.004 0.002 >=4 0.0002 0.032 0.004
mean_amr_distance ( mic )
-#> [1] -0.7311752 0.2104422 0.4478776 1.1601837 0.9227483 -0.9686106
-#> [7] 1.1601837 0.4478776 -1.4434813 -1.2060459
+#> [1] -0.2047915 1.5799751 -0.4038557 -1.2641969 -0.2047915 -0.4038557
+#> [7] 1.7790393 -1.0651327 0.3924011 -0.2047915
# equal to the Z-score of their log2:
( log2 ( mic ) - mean ( log2 ( mic ) ) ) / sd ( log2 ( mic ) )
-#> [1] -0.7311752 0.2104422 0.4478776 1.1601837 0.9227483 -0.9686106
-#> [7] 1.1601837 0.4478776 -1.4434813 -1.2060459
+#> [1] -0.2047915 1.5799751 -0.4038557 -1.2641969 -0.2047915 -0.4038557
+#> [7] 1.7790393 -1.0651327 0.3924011 -0.2047915
disk <- random_disk ( 10 )
disk
#> Class 'disk'
-#> [1] 50 49 38 33 31 17 42 43 46 37
+#> [1] 43 12 28 32 22 31 35 25 43 35
mean_amr_distance ( disk )
-#> [1] 1.15131286 1.05032051 -0.06059541 -0.56555720 -0.76754191 -2.18143490
-#> [7] 0.34337401 0.44436637 0.74734344 -0.16158777
+#> [1] 1.30998909 -1.96498364 -0.27467513 0.14790199 -0.90854082 0.04225771
+#> [7] 0.46483484 -0.59160798 1.30998909 0.46483484
y <- data.frame (
id = LETTERS [ 1 : 10 ] ,
@@ -144,35 +144,35 @@
)
y
#> id amox cipr gent tobr
-#> 1 A I 27 >=2 8
-#> 2 B S 28 1 8
-#> 3 C R 33 1 8
-#> 4 D R 32 1 16
-#> 5 E I 25 0.5 16
-#> 6 F I 19 0.5 8
-#> 7 G S 23 0.5 16
-#> 8 H R 27 0.5 8
-#> 9 I S 29 1 8
-#> 10 J R 32 0.5 16
+#> 1 A S 31 2 >=16
+#> 2 B S 27 <=1 8
+#> 3 C R 25 2 4
+#> 4 D R 25 <=1 2
+#> 5 E I 31 <=1 2
+#> 6 F S 32 <=1 8
+#> 7 G I 29 2 2
+#> 8 H S 18 <=1 4
+#> 9 I S 28 <=1 4
+#> 10 J R 17 <=1 2
mean_amr_distance ( y )
#> ℹ Calculating mean AMR distance based on columns "amox", "cipr", "gent",
#> and "tobr"
-#> [1] 0.08471751 -0.21572693 0.55391610 0.98093500 -0.26046456 -1.08721162
-#> [7] -0.37467261 -0.14625651 -0.15862291 0.62338653
+#> [1] 0.90606144 -0.03989270 0.66241774 -0.09230226 -0.32300020 0.19914999
+#> [7] 0.09893189 -0.70734036 -0.22925499 -0.47477055
y $ amr_distance <- mean_amr_distance ( y , is.mic ( y ) )
#> ℹ Calculating mean AMR distance based on columns "gent" and "tobr"
y [ order ( y $ amr_distance ) , ]
#> id amox cipr gent tobr amr_distance
-#> 6 F I 19 0.5 8 -0.8163565
-#> 8 H R 27 0.5 8 -0.8163565
-#> 2 B S 28 1 8 -0.1012596
-#> 3 C R 33 1 8 -0.1012596
-#> 9 I S 29 1 8 -0.1012596
-#> 5 E I 25 0.5 16 0.1518893
-#> 7 G S 23 0.5 16 0.1518893
-#> 10 J R 32 0.5 16 0.1518893
-#> 1 A I 27 >=2 8 0.6138374
-#> 4 D R 32 1 16 0.8669863
+#> 4 D R 25 <=1 2 -0.7848712
+#> 5 E I 31 <=1 2 -0.7848712
+#> 10 J R 17 <=1 2 -0.7848712
+#> 8 H S 18 <=1 4 -0.3105295
+#> 9 I S 28 <=1 4 -0.3105295
+#> 2 B S 27 <=1 8 0.1638121
+#> 6 F S 32 <=1 8 0.1638121
+#> 7 G I 29 2 2 0.2502272
+#> 3 C R 25 2 4 0.7245688
+#> 1 A S 31 2 >=16 1.6732521
if ( require ( "dplyr" ) ) {
y %>%
@@ -185,16 +185,16 @@
#> ℹ Calculating mean AMR distance based on columns "amox", "cipr", "gent",
#> and "tobr"
#> id amox cipr gent tobr amr_distance check_id_C
-#> 1 C R 33 1 8 0.55391610 0.00000000
-#> 2 J R 32 0.5 16 0.62338653 0.06947042
-#> 3 D R 32 1 16 0.98093500 0.42701889
-#> 4 A I 27 >=2 8 0.08471751 0.46919859
-#> 5 H R 27 0.5 8 -0.14625651 0.70017262
-#> 6 I S 29 1 8 -0.15862291 0.71253901
-#> 7 B S 28 1 8 -0.21572693 0.76964304
-#> 8 E I 25 0.5 16 -0.26046456 0.81438066
-#> 9 G S 23 0.5 16 -0.37467261 0.92858871
-#> 10 F I 19 0.5 8 -1.08721162 1.64112773
+#> 1 C R 25 2 4 0.66241774 0.0000000
+#> 2 A S 31 2 >=16 0.90606144 0.2436437
+#> 3 F S 32 <=1 8 0.19914999 0.4632678
+#> 4 G I 29 2 2 0.09893189 0.5634858
+#> 5 B S 27 <=1 8 -0.03989270 0.7023104
+#> 6 D R 25 <=1 2 -0.09230226 0.7547200
+#> 7 I S 28 <=1 4 -0.22925499 0.8916727
+#> 8 E I 31 <=1 2 -0.32300020 0.9854179
+#> 9 J R 17 <=1 2 -0.47477055 1.1371883
+#> 10 H S 18 <=1 4 -0.70734036 1.3697581
if ( require ( "dplyr" ) ) {
# support for groups
example_isolates %>%
diff --git a/reference/microorganisms.codes.html b/reference/microorganisms.codes.html
index 6b4dfaf36..2c284512a 100644
--- a/reference/microorganisms.codes.html
+++ b/reference/microorganisms.codes.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/microorganisms.groups.html b/reference/microorganisms.groups.html
index 7faf44683..e9c556745 100644
--- a/reference/microorganisms.groups.html
+++ b/reference/microorganisms.groups.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/microorganisms.html b/reference/microorganisms.html
index 51770d540..6cc942f60 100644
--- a/reference/microorganisms.html
+++ b/reference/microorganisms.html
@@ -9,7 +9,7 @@ This data set is carefully crafted, yet made 100% reproducible from public and a
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/mo_matching_score.html b/reference/mo_matching_score.html
index aa909344f..8d4e1838f 100644
--- a/reference/mo_matching_score.html
+++ b/reference/mo_matching_score.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/mo_property.html b/reference/mo_property.html
index 9dc0b9480..f3a790ccc 100644
--- a/reference/mo_property.html
+++ b/reference/mo_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/mo_source.html b/reference/mo_source.html
index f6701b2e2..b6bc93aa1 100644
--- a/reference/mo_source.html
+++ b/reference/mo_source.html
@@ -9,7 +9,7 @@ This is the fastest way to have your organisation (or analysis) specific codes p
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/pca.html b/reference/pca.html
index d39e6b652..a9fcdc369 100644
--- a/reference/pca.html
+++ b/reference/pca.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/plot-1.png b/reference/plot-1.png
index 67dc915a1..7e259c5dc 100644
Binary files a/reference/plot-1.png and b/reference/plot-1.png differ
diff --git a/reference/plot-10.png b/reference/plot-10.png
index 8bc05d262..2c4380c12 100644
Binary files a/reference/plot-10.png and b/reference/plot-10.png differ
diff --git a/reference/plot-11.png b/reference/plot-11.png
index e17e671cb..e318cc1bd 100644
Binary files a/reference/plot-11.png and b/reference/plot-11.png differ
diff --git a/reference/plot-13.png b/reference/plot-13.png
index 646b38f41..6e82273a6 100644
Binary files a/reference/plot-13.png and b/reference/plot-13.png differ
diff --git a/reference/plot-14.png b/reference/plot-14.png
index 28ffdfb4d..c4a893e28 100644
Binary files a/reference/plot-14.png and b/reference/plot-14.png differ
diff --git a/reference/plot-15.png b/reference/plot-15.png
index e05cedec1..b62f40cda 100644
Binary files a/reference/plot-15.png and b/reference/plot-15.png differ
diff --git a/reference/plot-16.png b/reference/plot-16.png
index 241713145..c3dc4034c 100644
Binary files a/reference/plot-16.png and b/reference/plot-16.png differ
diff --git a/reference/plot-17.png b/reference/plot-17.png
index a06c20a8e..071d225f0 100644
Binary files a/reference/plot-17.png and b/reference/plot-17.png differ
diff --git a/reference/plot-18.png b/reference/plot-18.png
index 4be673ad0..ccd1d9353 100644
Binary files a/reference/plot-18.png and b/reference/plot-18.png differ
diff --git a/reference/plot-19.png b/reference/plot-19.png
index a90eab3e3..547164642 100644
Binary files a/reference/plot-19.png and b/reference/plot-19.png differ
diff --git a/reference/plot-2.png b/reference/plot-2.png
index 2f293236a..b6a6ada96 100644
Binary files a/reference/plot-2.png and b/reference/plot-2.png differ
diff --git a/reference/plot-20.png b/reference/plot-20.png
index 918ed7755..f194dd026 100644
Binary files a/reference/plot-20.png and b/reference/plot-20.png differ
diff --git a/reference/plot-21.png b/reference/plot-21.png
index d587f5d27..00349255b 100644
Binary files a/reference/plot-21.png and b/reference/plot-21.png differ
diff --git a/reference/plot-3.png b/reference/plot-3.png
index 16486d07b..54492c494 100644
Binary files a/reference/plot-3.png and b/reference/plot-3.png differ
diff --git a/reference/plot-4.png b/reference/plot-4.png
index 62dbd73a4..6db10b835 100644
Binary files a/reference/plot-4.png and b/reference/plot-4.png differ
diff --git a/reference/plot.html b/reference/plot.html
index e711ac5e2..d9bdcd574 100644
--- a/reference/plot.html
+++ b/reference/plot.html
@@ -9,7 +9,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/proportion.html b/reference/proportion.html
index 45937c2f3..d6e1545ec 100644
--- a/reference/proportion.html
+++ b/reference/proportion.html
@@ -9,7 +9,7 @@ resistance() should be used to calculate resistance, susceptibility() should be
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/random-1.png b/reference/random-1.png
index cd6ff3e24..05ac1ed35 100644
Binary files a/reference/random-1.png and b/reference/random-1.png differ
diff --git a/reference/random-2.png b/reference/random-2.png
index b2afd1332..a7345690c 100644
Binary files a/reference/random-2.png and b/reference/random-2.png differ
diff --git a/reference/random.html b/reference/random.html
index f95f67dca..e6a4ec66c 100644
--- a/reference/random.html
+++ b/reference/random.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -111,15 +111,15 @@
Examples
random_mic ( 25 )
#> Class 'mic'
-#> [1] 1 0.064 2 0.016 128 0.001 0.004 0.008 64 0.064
-#> [11] 0.002 0.001 0.016 0.004 0.0005 0.0005 0.125 0.032 0.032 8
-#> [21] 2 8 0.008 0.0005 8
+#> [1] 0.016 0.125 0.125 0.25 0.5 0.004 0.002 0.002 0.032 0.004
+#> [11] 0.032 0.0005 0.5 1 0.016 0.008 2 0.125 0.25 0.25
+#> [21] 0.032 1 0.008 0.004 0.25
random_disk ( 25 )
#> Class 'disk'
-#> [1] 46 38 45 47 24 28 45 43 19 23 44 19 31 22 40 39 39 36 35 14 34 45 21 19 39
+#> [1] 47 20 36 18 44 43 25 28 26 44 36 42 8 28 44 31 29 49 30 28 39 49 25 49 48
random_sir ( 25 )
#> Class 'sir'
-#> [1] I S R I R I S S S R R R I I R R I S R R S I S R I
+#> [1] R S R S R R S I I I S R R S I I S I I I S S R S S
# add more skewedness, make more realistic by setting a bug and/or drug:
disks <- random_disk ( 100 , severity = 2 , mo = "Escherichia coli" , ab = "CIP" )
@@ -132,28 +132,28 @@
# \donttest{
random_mic ( 25 , "Klebsiella pneumoniae" ) # range 0.0625-64
#> Class 'mic'
-#> [1] 2 0.032 32 0.5 0.001 0.008 0.002 4 0.0005 1
-#> [11] 0.001 1 8 0.002 0.25 2 0.016 0.004 0.25 0.125
-#> [21] 0.002 0.5 0.004 >=256 0.0005
+#> [1] 0.004 4 0.032 16 0.016 16 0.001 0.0002 0.002 0.004
+#> [11] 0.001 0.0005 0.0001 0.002 0.125 >=64 0.004 0.0005 0.001 0.0002
+#> [21] 0.0005 0.001 0.0005 0.004 0.032
random_mic ( 25 , "Klebsiella pneumoniae" , "meropenem" ) # range 0.0625-16
#> Class 'mic'
-#> [1] 4 >=8 4 >=8 4 >=8 4 4 4 4 4 4 >=8 >=8 4 >=8 4 4 4
-#> [20] 4 4 4 4 4 4
+#> [1] <=0.5 <=0.5 <=0.5 1 <=0.5 <=0.5 <=0.5 <=0.5 <=0.5 <=0.5 1 1
+#> [13] <=0.5 <=0.5 <=0.5 <=0.5 1 <=0.5 <=0.5 <=0.5 <=0.5 1 1 <=0.5
+#> [25] <=0.5
random_mic ( 25 , "Streptococcus pneumoniae" , "meropenem" ) # range 0.0625-4
#> Class 'mic'
-#> [1] <=0.25 0.5 <=0.25 <=0.25 <=0.25 0.5 <=0.25 <=0.25 <=0.25 <=0.25
-#> [11] <=0.25 <=0.25 0.5 <=0.25 <=0.25 <=0.25 0.5 <=0.25 0.5 <=0.25
-#> [21] <=0.25 0.5 <=0.25 0.5 0.5
+#> [1] >=2 1 1 1 >=2 >=2 >=2 1 >=2 1 1 >=2 1 1 1 >=2 1 1 1
+#> [20] >=2 >=2 1 1 1 1
random_disk ( 25 , "Klebsiella pneumoniae" ) # range 8-50
#> Class 'disk'
-#> [1] 33 26 16 27 29 33 24 17 17 15 16 26 26 14 17 29 25 25 24 32 32 34 18 31 10
+#> [1] 28 12 30 26 9 34 30 19 32 31 33 34 30 19 15 24 18 34 12 32 29 33 29 32 17
random_disk ( 25 , "Klebsiella pneumoniae" , "ampicillin" ) # range 11-17
#> Class 'disk'
-#> [1] 19 20 11 14 12 12 17 16 12 10 15 22 19 21 19 17 18 19 21 17 21 15 17 12 19
+#> [1] 18 15 19 13 22 20 22 13 18 14 19 13 12 22 20 21 12 20 18 19 20 22 18 17 20
random_disk ( 25 , "Streptococcus pneumoniae" , "ampicillin" ) # range 12-27
#> Class 'disk'
-#> [1] 27 24 31 22 35 28 26 32 24 18 35 33 24 28 33 25 35 25 32 24 26 20 23 22 33
+#> [1] 21 31 27 28 30 34 16 32 28 25 25 23 29 26 24 28 27 33 30 19 30 22 27 22 32
# }
diff --git a/reference/resistance_predict.html b/reference/resistance_predict.html
index 827b8ca58..160f6ad22 100644
--- a/reference/resistance_predict.html
+++ b/reference/resistance_predict.html
@@ -9,7 +9,7 @@ NOTE: These functions are deprecated and will be removed in a future version. Us
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/skewness.html b/reference/skewness.html
index 32fec206c..4f5faf525 100644
--- a/reference/skewness.html
+++ b/reference/skewness.html
@@ -9,7 +9,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
@@ -90,7 +90,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
Examples
skewness ( runif ( 1000 ) )
-#> [1] -0.03886098
+#> [1] -0.01429035
On this page
diff --git a/reference/step_mic_log2.html b/reference/step_mic_log2.html
deleted file mode 100644
index ba0c13dee..000000000
--- a/reference/step_mic_log2.html
+++ /dev/null
@@ -1,8 +0,0 @@
-
-
-
-
-
-
-
-
diff --git a/reference/step_sir_numeric.html b/reference/step_sir_numeric.html
deleted file mode 100644
index ba0c13dee..000000000
--- a/reference/step_sir_numeric.html
+++ /dev/null
@@ -1,8 +0,0 @@
-
-
-
-
-
-
-
-
diff --git a/reference/top_n_microorganisms.html b/reference/top_n_microorganisms.html
index eef431ddc..009d7173a 100644
--- a/reference/top_n_microorganisms.html
+++ b/reference/top_n_microorganisms.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/reference/translate.html b/reference/translate.html
index 60b8af665..21dacb690 100644
--- a/reference/translate.html
+++ b/reference/translate.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.0.9021
+ 3.0.0.9029
diff --git a/search.json b/search.json
index d49017f7a..61697fca0 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://amr-for-r.org/articles/AMR.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Conduct AMR data analysis","text":"Conducting AMR data analysis unfortunately requires -depth knowledge different scientific fields, makes hard right. least, requires: Good questions (always start !) reliable data thorough understanding (clinical) epidemiology, understand clinical epidemiological relevance possible bias results thorough understanding (clinical) microbiology/infectious diseases, understand microorganisms causal infections implications pharmaceutical treatment, well understanding intrinsic acquired microbial resistance Experience data analysis microbiological tests results, understand determination limitations MIC values interpretations SIR values Availability biological taxonomy microorganisms probably normalisation factors pharmaceuticals, defined daily doses (DDD) Available (inter-)national guidelines, profound methods apply course, instantly provide knowledge experience. AMR package, aimed providing (1) tools simplify antimicrobial resistance data cleaning, transformation analysis, (2) methods easily incorporate international guidelines (3) scientifically reliable reference data, including requirements mentioned . AMR package enables standardised reproducible AMR data analysis, application evidence-based rules, determination first isolates, translation various codes microorganisms antimicrobial agents, determination (multi-drug) resistant microorganisms, calculation antimicrobial resistance, prevalence future trends.","code":""},{"path":"https://amr-for-r.org/articles/AMR.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"Conduct AMR data analysis","text":"tutorial, create fake demonstration data work . can skip Cleaning data already data ready. start analysis, try make structure data generally look like :","code":""},{"path":"https://amr-for-r.org/articles/AMR.html","id":"needed-r-packages","dir":"Articles","previous_headings":"Preparation","what":"Needed R packages","title":"Conduct AMR data analysis","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2 RStudio. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. also use cleaner package, can used cleaning data creating frequency tables. AMR package contains data set example_isolates_unclean, might look data users extracted laboratory systems: AMR data analysis, like microorganism column contain valid, --date taxonomy, antibiotic columns cleaned SIR values well.","code":"library(dplyr) library(ggplot2) library(AMR) # (if not yet installed, install with:) # install.packages(c(\"dplyr\", \"ggplot2\", \"AMR\")) example_isolates_unclean #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 E. coli R I S S #> 2 R7 A 2018-04-03 K. pneumoniae R I S S #> 3 P3 A 2014-09-19 E. coli R S S S #> 4 P10 A 2015-12-10 E. coli S I S S #> 5 B7 A 2015-03-02 E. coli S S S S #> 6 W3 A 2018-03-31 S. aureus R S R S #> 7 J8 A 2016-06-14 E. coli R S S S #> 8 M3 A 2015-10-25 E. coli R S S S #> 9 J3 A 2019-06-19 E. coli S S S S #> 10 G6 A 2015-04-27 S. aureus S S S S #> # ℹ 2,990 more rows # we will use 'our_data' as the data set name for this tutorial our_data <- example_isolates_unclean"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"taxonomy-of-microorganisms","dir":"Articles","previous_headings":"Preparation","what":"Taxonomy of microorganisms","title":"Conduct AMR data analysis","text":".mo(), users can transform arbitrary microorganism names codes current taxonomy. AMR package contains --date taxonomic data. specific, currently included data retrieved 24 Jun 2024. codes AMR packages come .mo() short, still human readable. importantly, .mo() supports kinds input: first character codes denote taxonomic kingdom, Bacteria (B), Fungi (F), Protozoa (P). AMR package also contain functions directly retrieve taxonomic properties, name, genus, species, family, order, even Gram-stain. start mo_ use .mo() internally, still arbitrary user input can used: Now can thus clean data: Apparently, uncertainty translation taxonomic codes. Let’s check : ’s good.","code":"as.mo(\"Klebsiella pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"K. pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLEPNE\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLPN\") #> Class 'mo' #> [1] B_KLBSL_PNMN mo_family(\"K. pneumoniae\") #> [1] \"Enterobacteriaceae\" mo_genus(\"K. pneumoniae\") #> [1] \"Klebsiella\" mo_species(\"K. pneumoniae\") #> [1] \"pneumoniae\" mo_gramstain(\"Klebsiella pneumoniae\") #> [1] \"Gram-negative\" mo_ref(\"K. pneumoniae\") #> [1] \"Trevisan, 1887\" mo_snomed(\"K. pneumoniae\") #> [[1]] #> [1] \"1098101000112102\" \"446870005\" \"1098201000112108\" \"409801009\" #> [5] \"56415008\" \"714315002\" \"713926009\" our_data$bacteria <- as.mo(our_data$bacteria, info = TRUE) #> ℹ Retrieved values from the `microorganisms.codes` data set for \"ESCCOL\", #> \"KLEPNE\", \"STAAUR\", and \"STRPNE\". #> ℹ Microorganism translation was uncertain for four microorganisms. Run #> `mo_uncertainties()` to review these uncertainties, or use #> `add_custom_microorganisms()` to add custom entries. mo_uncertainties() #> Matching scores are based on the resemblance between the input and the full #> taxonomic name, and the pathogenicity in humans. See `?mo_matching_score`. #> Colour keys: 0.000-0.549 0.550-0.649 0.650-0.749 0.750-1.000 #> #> -------------------------------------------------------------------------------- #> \"E. coli\" -> Escherichia coli (B_ESCHR_COLI, 0.688) #> Also matched: Enterococcus crotali (0.650), Escherichia coli coli #> (0.643), Escherichia coli expressing (0.611), Enterobacter cowanii #> (0.600), Enterococcus columbae (0.595), Enterococcus camelliae (0.591), #> Enterococcus casseliflavus (0.577), Enterobacter cloacae cloacae #> (0.571), Enterobacter cloacae complex (0.571), and Enterobacter cloacae #> dissolvens (0.565) #> -------------------------------------------------------------------------------- #> \"K. pneumoniae\" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786) #> Also matched: Klebsiella pneumoniae complex (0.707), Klebsiella #> pneumoniae ozaenae (0.707), Klebsiella pneumoniae pneumoniae (0.688), #> Klebsiella pneumoniae rhinoscleromatis (0.658), Klebsiella pasteurii #> (0.500), Klebsiella planticola (0.500), Kingella potus (0.400), #> Kluyveromyces pseudotropicale (0.386), Kluyveromyces pseudotropicalis #> (0.363), and Kosakonia pseudosacchari (0.361) #> -------------------------------------------------------------------------------- #> \"S. aureus\" -> Staphylococcus aureus (B_STPHY_AURS, 0.690) #> Also matched: Staphylococcus aureus aureus (0.643), Staphylococcus #> argenteus (0.625), Staphylococcus aureus anaerobius (0.625), #> Staphylococcus auricularis (0.615), Salmonella Aurelianis (0.595), #> Salmonella Aarhus (0.588), Salmonella Amounderness (0.587), #> Staphylococcus argensis (0.587), Streptococcus australis (0.587), and #> Salmonella choleraesuis arizonae (0.562) #> -------------------------------------------------------------------------------- #> \"S. pneumoniae\" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750) #> Also matched: Streptococcus pseudopneumoniae (0.700), Streptococcus #> phocae salmonis (0.552), Serratia proteamaculans quinovora (0.545), #> Streptococcus pseudoporcinus (0.536), Staphylococcus piscifermentans #> (0.533), Staphylococcus pseudintermedius (0.532), Serratia #> proteamaculans proteamaculans (0.526), Streptococcus gallolyticus #> pasteurianus (0.526), Salmonella Portanigra (0.524), and Streptococcus #> periodonticum (0.519) #> #> Only the first 10 other matches of each record are shown. Run #> `print(mo_uncertainties(), n = ...)` to view more entries, or save #> `mo_uncertainties()` to an object."},{"path":"https://amr-for-r.org/articles/AMR.html","id":"antibiotic-results","dir":"Articles","previous_headings":"Preparation","what":"Antibiotic results","title":"Conduct AMR data analysis","text":"column antibiotic test results must also cleaned. AMR package comes three new data types work test results: mic minimal inhibitory concentrations (MIC), disk disk diffusion diameters, sir SIR data interpreted already. package can also determine SIR values based MIC disk diffusion values, read .sir() page. now, just clean SIR columns data using dplyr: basically cleaning, time start data inclusion.","code":"# method 1, be explicit about the columns: our_data <- our_data %>% mutate_at(vars(AMX:GEN), as.sir) # method 2, let the AMR package determine the eligible columns our_data <- our_data %>% mutate_if(is_sir_eligible, as.sir) # result: our_data #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S #> 7 J8 A 2016-06-14 B_ESCHR_COLI R S S S #> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S #> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S #> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S #> # ℹ 2,990 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"first-isolates","dir":"Articles","previous_headings":"Preparation","what":"First isolates","title":"Conduct AMR data analysis","text":"need know isolates can actually use analysis without repetition bias. conduct analysis antimicrobial resistance, must include first isolate every patient per episode (Hindler et al., Clin Infect Dis. 2007). , easily get overestimate underestimate resistance antibiotic. Imagine patient admitted MRSA found 5 different blood cultures following weeks (yes, countries like Netherlands blood drawing policies). resistance percentage oxacillin isolates overestimated, included MRSA . clearly selection bias. Clinical Laboratory Standards Institute (CLSI) appoints follows: (…) preparing cumulative antibiogram guide clinical decisions empirical antimicrobial therapy initial infections, first isolate given species per patient, per analysis period (eg, one year) included, irrespective body site, antimicrobial susceptibility profile, phenotypical characteristics (eg, biotype). first isolate easily identified, cumulative antimicrobial susceptibility test data prepared using first isolate generally comparable cumulative antimicrobial susceptibility test data calculated methods, providing duplicate isolates excluded. M39-A4 Analysis Presentation Cumulative Antimicrobial Susceptibility Test Data, 4th Edition. CLSI, 2014. Chapter 6.4 AMR package includes methodology first_isolate() function able apply four different methods defined Hindler et al. 2007: phenotype-based, episode-based, patient-based, isolate-based. right method depends goals analysis, default phenotype-based method case method properly correct duplicate isolates. Read methods first_isolate() page. outcome function can easily added data: 91% suitable resistance analysis! can now filter filter() function, also dplyr package: future use, two syntaxes can shortened: end 2 724 isolates analysis. Now data looks like: Time analysis.","code":"our_data <- our_data %>% mutate(first = first_isolate(info = TRUE)) #> ℹ Determining first isolates using an episode length of 365 days #> ℹ Using column 'bacteria' as input for `col_mo`. #> ℹ Using column 'date' as input for `col_date`. #> ℹ Using column 'patient_id' as input for `col_patient_id`. #> ℹ Basing inclusion on all antimicrobial results, using a points threshold #> of 2 #> => Found 2,724 'phenotype-based' first isolates (90.8% of total where a #> microbial ID was available) our_data_1st <- our_data %>% filter(first == TRUE) our_data_1st <- our_data %>% filter_first_isolate() our_data_1st #> # A tibble: 2,724 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S TRUE #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S TRUE #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S TRUE #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S TRUE #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S TRUE #> 7 M3 A 2015-10-25 B_ESCHR_COLI R S S S TRUE #> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE #> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE #> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE #> # ℹ 2,714 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"analysing-the-data","dir":"Articles","previous_headings":"","what":"Analysing the data","title":"Conduct AMR data analysis","text":"base R summary() function gives good first impression, comes support new mo sir classes now data set:","code":"summary(our_data_1st) #> patient_id hospital date #> Length:2724 Length:2724 Min. :2011-01-01 #> Class :character Class :character 1st Qu.:2013-04-07 #> Mode :character Mode :character Median :2015-06-03 #> Mean :2015-06-09 #> 3rd Qu.:2017-08-11 #> Max. :2019-12-27 #> bacteria AMX AMC #> Class :mo Class:sir Class:sir #> :0 %S :41.6% (n=1133) %S :52.6% (n=1432) #> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> #1 :B_ESCHR_COLI %I :16.4% (n=446) %I :12.2% (n=333) #> #2 :B_STPHY_AURS %R :42.0% (n=1145) %R :35.2% (n=959) #> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0) #> CIP GEN first #> Class:sir Class:sir Mode:logical #> %S :52.5% (n=1431) %S :61.0% (n=1661) TRUE:2724 #> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> %I : 6.5% (n=176) %I : 3.0% (n=82) #> %R :41.0% (n=1117) %R :36.0% (n=981) #> %NI : 0.0% (n=0) %NI : 0.0% (n=0) glimpse(our_data_1st) #> Rows: 2,724 #> Columns: 9 #> $ patient_id \"J3\", \"R7\", \"P3\", \"P10\", \"B7\", \"W3\", \"M3\", \"J3\", \"G6\", \"P4\"… #> $ hospital \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\",… #> $ date 2012-11-21, 2018-04-03, 2014-09-19, 2015-12-10, 2015-03-02… #> $ bacteria \"B_ESCHR_COLI\", \"B_KLBSL_PNMN\", \"B_ESCHR_COLI\", \"B_ESCHR_COL… #> $ AMX R, R, R, S, S, R, R, S, S, S, S, R, S, S, R, R, R, R, S, R,… #> $ AMC I, I, S, I, S, S, S, S, S, S, S, S, S, S, S, S, S, R, S, S,… #> $ CIP S, S, S, S, S, R, S, S, S, S, S, S, S, S, S, S, S, S, S, S,… #> $ GEN S, S, S, S, S, S, S, S, S, S, S, R, S, S, S, S, S, S, S, S,… #> $ first TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,… # number of unique values per column: sapply(our_data_1st, n_distinct) #> patient_id hospital date bacteria AMX AMC CIP #> 260 3 1854 4 3 3 3 #> GEN first #> 3 1"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"availability-of-species","dir":"Articles","previous_headings":"Analysing the data","what":"Availability of species","title":"Conduct AMR data analysis","text":"just get idea species distributed, create frequency table count() based name microorganisms:","code":"our_data %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1518 #> 2 Staphylococcus aureus 730 #> 3 Streptococcus pneumoniae 426 #> 4 Klebsiella pneumoniae 326 our_data_1st %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1321 #> 2 Staphylococcus aureus 682 #> 3 Streptococcus pneumoniae 402 #> 4 Klebsiella pneumoniae 319"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"select-and-filter-with-antibiotic-selectors","dir":"Articles","previous_headings":"Analysing the data","what":"Select and filter with antibiotic selectors","title":"Conduct AMR data analysis","text":"Using -called antibiotic class selectors, can select filter columns based antibiotic class antibiotic results :","code":"our_data_1st %>% select(date, aminoglycosides()) #> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin) #> # A tibble: 2,724 × 2 #> date GEN #> #> 1 2012-11-21 S #> 2 2018-04-03 S #> 3 2014-09-19 S #> 4 2015-12-10 S #> 5 2015-03-02 S #> 6 2018-03-31 S #> 7 2015-10-25 S #> 8 2019-06-19 S #> 9 2015-04-27 S #> 10 2011-06-21 S #> # ℹ 2,714 more rows our_data_1st %>% select(bacteria, betalactams()) #> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 2,724 × 3 #> bacteria AMX AMC #> #> 1 B_ESCHR_COLI R I #> 2 B_KLBSL_PNMN R I #> 3 B_ESCHR_COLI R S #> 4 B_ESCHR_COLI S I #> 5 B_ESCHR_COLI S S #> 6 B_STPHY_AURS R S #> 7 B_ESCHR_COLI R S #> 8 B_ESCHR_COLI S S #> 9 B_STPHY_AURS S S #> 10 B_ESCHR_COLI S S #> # ℹ 2,714 more rows our_data_1st %>% select(bacteria, where(is.sir)) #> # A tibble: 2,724 × 5 #> bacteria AMX AMC CIP GEN #> #> 1 B_ESCHR_COLI R I S S #> 2 B_KLBSL_PNMN R I S S #> 3 B_ESCHR_COLI R S S S #> 4 B_ESCHR_COLI S I S S #> 5 B_ESCHR_COLI S S S S #> 6 B_STPHY_AURS R S R S #> 7 B_ESCHR_COLI R S S S #> 8 B_ESCHR_COLI S S S S #> 9 B_STPHY_AURS S S S S #> 10 B_ESCHR_COLI S S S S #> # ℹ 2,714 more rows # filtering using AB selectors is also possible: our_data_1st %>% filter(any(aminoglycosides() == \"R\")) #> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin) #> # A tibble: 981 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE #> 2 X1 A 2017-07-04 B_STPHY_AURS R S S R TRUE #> 3 B3 A 2016-07-24 B_ESCHR_COLI S S S R TRUE #> 4 V7 A 2012-04-03 B_ESCHR_COLI S S S R TRUE #> 5 C9 A 2017-03-23 B_ESCHR_COLI S S S R TRUE #> 6 R1 A 2018-06-10 B_STPHY_AURS S S S R TRUE #> 7 S2 A 2013-07-19 B_STRPT_PNMN S S S R TRUE #> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE #> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE #> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE #> # ℹ 971 more rows our_data_1st %>% filter(all(betalactams() == \"R\")) #> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 462 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows # even works in base R (since R 3.0): our_data_1st[all(betalactams() == \"R\"), ] #> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 462 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"generate-antibiograms","dir":"Articles","previous_headings":"Analysing the data","what":"Generate antibiograms","title":"Conduct AMR data analysis","text":"Since AMR v2.0 (March 2023), easy create different types antibiograms, support 20 different languages. four antibiogram types, proposed Klinker et al. (2021, DOI 10.1177/20499361211011373), supported new antibiogram() function: Traditional Antibiogram (TA) e.g, susceptibility Pseudomonas aeruginosa piperacillin/tazobactam (TZP) Combination Antibiogram (CA) e.g, sdditional susceptibility Pseudomonas aeruginosa TZP + tobramycin versus TZP alone Syndromic Antibiogram (SA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) Weighted-Incidence Syndromic Combination Antibiogram (WISCA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) male patients age >=65 years heart failure section, show use antibiogram() function create antibiogram types. starters, included example_isolates data set looks like:","code":"example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM , MTR , CHL , COL , MUP , …"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"traditional-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Traditional Antibiogram","title":"Conduct AMR data analysis","text":"create traditional antibiogram, simply state antibiotics used. antibiotics argument antibiogram() function supports (combination) previously mentioned antibiotic class selectors: Notice antibiogram() function automatically prints right format using Quarto R Markdown (page), even applies italics taxonomic names (using italicise_taxonomy() internally). also uses language OS either English, Arabic, Bengali, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swahili, Swedish, Turkish, Ukrainian, Urdu, Vietnamese. next example, force language Spanish using language argument:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems())) #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem) antibiogram(example_isolates, mo_transform = \"gramstain\", antibiotics = aminoglycosides(), ab_transform = \"name\", language = \"es\") #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"combined-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Combined Antibiogram","title":"Conduct AMR data analysis","text":"create combined antibiogram, use antibiotic codes names plus + character like :","code":"combined_ab <- antibiogram(example_isolates, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), ab_transform = NULL) combined_ab"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"syndromic-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Syndromic Antibiogram","title":"Conduct AMR data analysis","text":"create syndromic antibiogram, syndromic_group argument must used. can column data, e.g. ifelse() calculations based certain columns:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems()), syndromic_group = \"ward\") #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"weighted-incidence-syndromic-combination-antibiogram-wisca","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Weighted-Incidence Syndromic Combination Antibiogram (WISCA)","title":"Conduct AMR data analysis","text":"create Weighted-Incidence Syndromic Combination Antibiogram (WISCA), simply set wisca = TRUE antibiogram() function, use dedicated wisca() function. Unlike traditional antibiograms, WISCA provides syndrome-based susceptibility estimates, weighted pathogen incidence antimicrobial susceptibility patterns. WISCA uses Bayesian decision model integrate data multiple pathogens, improving empirical therapy guidance, especially low-incidence infections. pathogen-agnostic, meaning results syndrome-based rather stratified microorganism. reliable results, ensure data includes first isolates (use first_isolate()) consider filtering top n species (use top_n_microorganisms()), WISCA outcomes meaningful based robust incidence estimates. patient- syndrome-specific WISCA, run function grouped tibble, .e., using group_by() first:","code":"example_isolates %>% wisca(antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), minimum = 10) # Recommended threshold: ≥30 example_isolates %>% top_n_microorganisms(n = 10) %>% group_by(age_group = age_groups(age, c(25, 50, 75)), gender) %>% wisca(antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"))"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"plotting-antibiograms","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Plotting antibiograms","title":"Conduct AMR data analysis","text":"Antibiograms can plotted using autoplot() ggplot2 packages, since AMR package provides extension function: calculate antimicrobial resistance sensible way, also correcting results, use resistance() susceptibility() functions.","code":"autoplot(combined_ab)"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"resistance-percentages","dir":"Articles","previous_headings":"Analysing the data","what":"Resistance percentages","title":"Conduct AMR data analysis","text":"functions resistance() susceptibility() can used calculate antimicrobial resistance susceptibility. specific analyses, functions proportion_S(), proportion_SI(), proportion_I(), proportion_IR() proportion_R() can used determine proportion specific antimicrobial outcome. functions contain minimum argument, denoting minimum required number test results returning value. functions otherwise return NA. default minimum = 30, following CLSI M39-A4 guideline applying microbial epidemiology. per EUCAST guideline 2019, calculate resistance proportion R (proportion_R(), equal resistance()) susceptibility proportion S (proportion_SI(), equal susceptibility()). functions can used : can used conjunction group_by() summarise(), dplyr package:","code":"our_data_1st %>% resistance(AMX) #> [1] 0.4203377 our_data_1st %>% group_by(hospital) %>% summarise(amoxicillin = resistance(AMX)) #> # A tibble: 3 × 2 #> hospital amoxicillin #> #> 1 A 0.340 #> 2 B 0.551 #> 3 C 0.370"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"interpreting-mic-and-disk-diffusion-values","dir":"Articles","previous_headings":"Analysing the data","what":"Interpreting MIC and Disk Diffusion Values","title":"Conduct AMR data analysis","text":"Minimal inhibitory concentration (MIC) values disk diffusion diameters can interpreted clinical breakpoints (SIR) using .sir(). ’s example randomly generated MIC values Klebsiella pneumoniae ciprofloxacin: allows direct interpretation according EUCAST CLSI breakpoints, facilitating automated AMR data processing.","code":"set.seed(123) mic_values <- random_mic(100) sir_values <- as.sir(mic_values, mo = \"K. pneumoniae\", ab = \"cipro\", guideline = \"EUCAST 2024\") my_data <- tibble(MIC = mic_values, SIR = sir_values) my_data #> # A tibble: 100 × 2 #> MIC SIR #> #> 1 <=0.0001 S #> 2 0.0160 S #> 3 >=8.0000 R #> 4 0.0320 S #> 5 0.0080 S #> 6 64.0000 R #> 7 0.0080 S #> 8 0.1250 S #> 9 0.0320 S #> 10 0.0002 S #> # ℹ 90 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"plotting-mic-and-sir-interpretations","dir":"Articles","previous_headings":"Analysing the data","what":"Plotting MIC and SIR Interpretations","title":"Conduct AMR data analysis","text":"can visualise MIC distributions SIR interpretations using ggplot2, using new scale_y_mic() y-axis scale_colour_sir() colour-code SIR categories. plot provides intuitive way assess susceptibility patterns across different groups incorporating clinical breakpoints. straightforward less manual approach, ggplot2’s function autoplot() extended package directly plot MIC disk diffusion values: Author: Dr. Matthijs Berends, 23rd Feb 2025","code":"# add a group my_data$group <- rep(c(\"A\", \"B\", \"C\", \"D\"), each = 25) ggplot(my_data, aes(x = group, y = MIC, colour = SIR)) + geom_jitter(width = 0.2, size = 2) + geom_boxplot(fill = NA, colour = \"grey40\") + scale_y_mic() + scale_colour_sir() + labs(title = \"MIC Distribution and SIR Interpretation\", x = \"Sample Groups\", y = \"MIC (mg/L)\") autoplot(mic_values) # by providing `mo` and `ab`, colours will indicate the SIR interpretation: autoplot(mic_values, mo = \"K. pneumoniae\", ab = \"cipro\", guideline = \"EUCAST 2024\")"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"AMR for Python","text":"AMR package R powerful tool antimicrobial resistance (AMR) analysis. provides extensive features handling microbial antimicrobial data. However, work primarily Python, now intuitive option available: AMR Python package. Python package wrapper around AMR R package. uses rpy2 package internally. Despite need R installed, Python users can now easily work AMR data directly Python code.","code":""},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"prerequisites","dir":"Articles","previous_headings":"","what":"Prerequisites","title":"AMR for Python","text":"package tested virtual environment (venv). can set environment running: can activate environment, venv ready work .","code":"# linux and macOS: python -m venv /path/to/new/virtual/environment # Windows: python -m venv C:\\path\\to\\new\\virtual\\environment"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"install-amr","dir":"Articles","previous_headings":"","what":"Install AMR","title":"AMR for Python","text":"Since Python package available official Python Package Index, can just run: Make sure R installed. need install AMR R package, installed automatically. Linux: macOS (using Homebrew): Windows, visit CRAN download page download install R.","code":"pip install AMR # Ubuntu / Debian sudo apt install r-base # Fedora: sudo dnf install R # CentOS/RHEL sudo yum install R brew install r"},{"path":[]},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"cleaning-taxonomy","dir":"Articles","previous_headings":"Examples of Usage","what":"Cleaning Taxonomy","title":"AMR for Python","text":"’s example demonstrates clean microorganism drug names using AMR Python package:","code":"import pandas as pd import AMR # Sample data data = { \"MOs\": ['E. coli', 'ESCCOL', 'esco', 'Esche coli'], \"Drug\": ['Cipro', 'CIP', 'J01MA02', 'Ciproxin'] } df = pd.DataFrame(data) # Use AMR functions to clean microorganism and drug names df['MO_clean'] = AMR.mo_name(df['MOs']) df['Drug_clean'] = AMR.ab_name(df['Drug']) # Display the results print(df)"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"explanation","dir":"Articles","previous_headings":"Examples of Usage > Cleaning Taxonomy","what":"Explanation","title":"AMR for Python","text":"mo_name: function standardises microorganism names. , different variations Escherichia coli (“E. coli”, “ESCCOL”, “esco”, “Esche coli”) converted correct, standardised form, “Escherichia coli”. ab_name: Similarly, function standardises antimicrobial names. different representations ciprofloxacin (e.g., “Cipro”, “CIP”, “J01MA02”, “Ciproxin”) converted standard name, “Ciprofloxacin”.","code":""},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"calculating-amr","dir":"Articles","previous_headings":"Examples of Usage","what":"Calculating AMR","title":"AMR for Python","text":"","code":"import AMR import pandas as pd df = AMR.example_isolates result = AMR.resistance(df[\"AMX\"]) print(result) [0.59555556]"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"generating-antibiograms","dir":"Articles","previous_headings":"Examples of Usage","what":"Generating Antibiograms","title":"AMR for Python","text":"One core functions AMR package generating antibiogram, table summarises antimicrobial susceptibility bacterial isolates. ’s can generate antibiogram Python: example, generate antibiogram selecting various antibiotics.","code":"result2a = AMR.antibiogram(df[[\"mo\", \"AMX\", \"CIP\", \"TZP\"]]) print(result2a) result2b = AMR.antibiogram(df[[\"mo\", \"AMX\", \"CIP\", \"TZP\"]], mo_transform = \"gramstain\") print(result2b)"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"taxonomic-data-sets-now-in-python","dir":"Articles","previous_headings":"Examples of Usage","what":"Taxonomic Data Sets Now in Python!","title":"AMR for Python","text":"Python user, might like important data sets AMR R package, microorganisms, antimicrobials, clinical_breakpoints, example_isolates, now available regular Python data frames:","code":"AMR.microorganisms AMR.antimicrobials"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"conclusion","dir":"Articles","previous_headings":"","what":"Conclusion","title":"AMR for Python","text":"AMR Python package, Python users can now effortlessly call R functions AMR R package. eliminates need complex rpy2 configurations provides clean, easy--use interface antimicrobial resistance analysis. examples provided demonstrate can applied typical workflows, standardising microorganism antimicrobial names calculating resistance. just running import AMR, users can seamlessly integrate robust features R AMR package Python workflows. Whether ’re cleaning data analysing resistance patterns, AMR Python package makes easy work AMR data Python.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"example-1-using-antimicrobial-selectors","dir":"Articles","previous_headings":"","what":"Example 1: Using Antimicrobial Selectors","title":"AMR with tidymodels","text":"leveraging power tidymodels AMR package, ’ll build reproducible machine learning workflow predict Gramstain microorganism two important antibiotic classes: aminoglycosides beta-lactams.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"objective","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Objective","title":"AMR with tidymodels","text":"goal build predictive model using tidymodels framework determine Gramstain microorganism based microbial data. : Preprocess data using selector functions aminoglycosides() betalactams(). Define logistic regression model prediction. Use structured tidymodels workflow preprocess, train, evaluate model.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"data-preparation","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Data Preparation","title":"AMR with tidymodels","text":"begin loading required libraries preparing example_isolates dataset AMR package. Prepare data: Explanation: aminoglycosides() betalactams() dynamically select columns antimicrobials classes. drop_na() ensures model receives complete cases training.","code":"# Load required libraries library(AMR) # For AMR data analysis library(tidymodels) # For machine learning workflows, and data manipulation (dplyr, tidyr, ...) # Your data could look like this: example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM , MTR , CHL , COL , MUP , … # Select relevant columns for prediction data <- example_isolates %>% # select AB results dynamically select(mo, aminoglycosides(), betalactams()) %>% # replace NAs with NI (not-interpretable) mutate(across(where(is.sir), ~replace_na(.x, \"NI\")), # make factors of SIR columns across(where(is.sir), as.integer), # get Gramstain of microorganisms mo = as.factor(mo_gramstain(mo))) %>% # drop NAs - the ones without a Gramstain (fungi, etc.) drop_na() #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For `betalactams()` using columns 'PEN' (benzylpenicillin), 'OXA' #> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC' #> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP' #> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM' #> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime), #> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem)"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"defining-the-workflow","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Defining the Workflow","title":"AMR with tidymodels","text":"now define tidymodels workflow, consists three steps: preprocessing, model specification, fitting.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"preprocessing-with-a-recipe","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors > Defining the Workflow","what":"1. Preprocessing with a Recipe","title":"AMR with tidymodels","text":"create recipe preprocess data modelling. recipe includes least one preprocessing operation, like step_corr(), necessary parameters can estimated training set using prep(): Explanation: recipe(mo ~ ., data = data) take mo column outcome columns predictors. step_corr() removes predictors (.e., antibiotic columns) higher correlation 90%. Notice recipe contains just antimicrobial selector functions - need define columns specifically. preparation (retrieved prep()) can see columns variables ‘AMX’ ‘CTX’ removed correlate much existing, variables.","code":"# Define the recipe for data preprocessing resistance_recipe <- recipe(mo ~ ., data = data) %>% step_corr(c(aminoglycosides(), betalactams()), threshold = 0.9) resistance_recipe #> #> ── Recipe ────────────────────────────────────────────────────────────────────── #> #> ── Inputs #> Number of variables by role #> outcome: 1 #> predictor: 20 #> #> ── Operations #> • Correlation filter on: c(aminoglycosides(), betalactams()) prep(resistance_recipe) #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For `betalactams()` using columns 'PEN' (benzylpenicillin), 'OXA' #> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC' #> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP' #> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM' #> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime), #> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem) #> #> ── Recipe ────────────────────────────────────────────────────────────────────── #> #> ── Inputs #> Number of variables by role #> outcome: 1 #> predictor: 20 #> #> ── Training information #> Training data contained 1968 data points and no incomplete rows. #> #> ── Operations #> • Correlation filter on: AMX CTX | Trained"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"specifying-the-model","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors > Defining the Workflow","what":"2. Specifying the Model","title":"AMR with tidymodels","text":"define logistic regression model since resistance prediction binary classification task. Explanation: logistic_reg() sets logistic regression model. set_engine(\"glm\") specifies use R’s built-GLM engine.","code":"# Specify a logistic regression model logistic_model <- logistic_reg() %>% set_engine(\"glm\") # Use the Generalised Linear Model engine logistic_model #> Logistic Regression Model Specification (classification) #> #> Computational engine: glm"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"building-the-workflow","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors > Defining the Workflow","what":"3. Building the Workflow","title":"AMR with tidymodels","text":"bundle recipe model together workflow, organises entire modelling process.","code":"# Combine the recipe and model into a workflow resistance_workflow <- workflow() %>% add_recipe(resistance_recipe) %>% # Add the preprocessing recipe add_model(logistic_model) # Add the logistic regression model resistance_workflow #> ══ Workflow ════════════════════════════════════════════════════════════════════ #> Preprocessor: Recipe #> Model: logistic_reg() #> #> ── Preprocessor ──────────────────────────────────────────────────────────────── #> 1 Recipe Step #> #> • step_corr() #> #> ── Model ─────────────────────────────────────────────────────────────────────── #> Logistic Regression Model Specification (classification) #> #> Computational engine: glm"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"training-and-evaluating-the-model","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Training and Evaluating the Model","title":"AMR with tidymodels","text":"train model, split data training testing sets. , fit workflow training set evaluate performance. Explanation: initial_split() splits data training testing sets. fit() trains workflow training set. Notice fit(), antimicrobial selector functions internally called . training, functions called since stored recipe. Next, evaluate model testing data. Explanation: predict() generates predictions testing set. metrics() computes evaluation metrics like accuracy kappa. appears can predict Gram stain 99.5% accuracy based AMR results aminoglycosides beta-lactam antibiotics. ROC curve looks like :","code":"# Split data into training and testing sets set.seed(123) # For reproducibility data_split <- initial_split(data, prop = 0.8) # 80% training, 20% testing training_data <- training(data_split) # Training set testing_data <- testing(data_split) # Testing set # Fit the workflow to the training data fitted_workflow <- resistance_workflow %>% fit(training_data) # Train the model # Make predictions on the testing set predictions <- fitted_workflow %>% predict(testing_data) # Generate predictions probabilities <- fitted_workflow %>% predict(testing_data, type = \"prob\") # Generate probabilities predictions <- predictions %>% bind_cols(probabilities) %>% bind_cols(testing_data) # Combine with true labels predictions #> # A tibble: 394 × 24 #> .pred_class `.pred_Gram-negative` `.pred_Gram-positive` mo GEN TOB #> #> 1 Gram-positive 1.07e- 1 8.93 e- 1 Gram-p… 5 5 #> 2 Gram-positive 3.17e- 8 1.000e+ 0 Gram-p… 5 1 #> 3 Gram-negative 9.99e- 1 1.42 e- 3 Gram-n… 5 5 #> 4 Gram-positive 2.22e-16 1 e+ 0 Gram-p… 5 5 #> 5 Gram-negative 9.46e- 1 5.42 e- 2 Gram-n… 5 5 #> 6 Gram-positive 1.07e- 1 8.93 e- 1 Gram-p… 5 5 #> 7 Gram-positive 2.22e-16 1 e+ 0 Gram-p… 1 5 #> 8 Gram-positive 2.22e-16 1 e+ 0 Gram-p… 4 4 #> 9 Gram-negative 1 e+ 0 2.22 e-16 Gram-n… 1 1 #> 10 Gram-positive 6.05e-11 1.000e+ 0 Gram-p… 4 4 #> # ℹ 384 more rows #> # ℹ 18 more variables: AMK , KAN , PEN , OXA , FLC , #> # AMX , AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , IPM , MEM # Evaluate model performance metrics <- predictions %>% metrics(truth = mo, estimate = .pred_class) # Calculate performance metrics metrics #> # A tibble: 2 × 3 #> .metric .estimator .estimate #> #> 1 accuracy binary 0.995 #> 2 kap binary 0.989 # To assess some other model properties, you can make our own `metrics()` function our_metrics <- metric_set(accuracy, kap, ppv, npv) # add Positive Predictive Value and Negative Predictive Value metrics2 <- predictions %>% our_metrics(truth = mo, estimate = .pred_class) # run again on our `our_metrics()` function metrics2 #> # A tibble: 4 × 3 #> .metric .estimator .estimate #> #> 1 accuracy binary 0.995 #> 2 kap binary 0.989 #> 3 ppv binary 0.987 #> 4 npv binary 1 predictions %>% roc_curve(mo, `.pred_Gram-negative`) %>% autoplot()"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"conclusion","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Conclusion","title":"AMR with tidymodels","text":"post, demonstrated build machine learning pipeline tidymodels framework AMR package. combining selector functions like aminoglycosides() betalactams() tidymodels, efficiently prepared data, trained model, evaluated performance. workflow extensible antimicrobial classes resistance patterns, empowering users analyse AMR data systematically reproducibly.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"example-2-predicting-esbl-presence-using-raw-mics","dir":"Articles","previous_headings":"","what":"Example 2: Predicting ESBL Presence Using Raw MICs","title":"AMR with tidymodels","text":"second example, demonstrate use columns directly tidymodels workflows using AMR-specific recipe steps. includes transformation log2 scale using step_mic_log2(), prepares MIC values use classification models. approach idea formed basis publication DOI: 10.3389/fmicb.2025.1582703 model presence extended-spectrum beta-lactamases (ESBL).","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"objective-1","dir":"Articles","previous_headings":"Example 2: Predicting ESBL Presence Using Raw MICs","what":"Objective","title":"AMR with tidymodels","text":"goal : Use raw MIC values predict whether bacterial isolate produces ESBL. Apply AMR-aware preprocessing tidymodels recipe. Train classification model evaluate predictive performance.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"data-preparation-1","dir":"Articles","previous_headings":"Example 2: Predicting ESBL Presence Using Raw MICs","what":"Data Preparation","title":"AMR with tidymodels","text":"use esbl_isolates dataset comes AMR package. Explanation: esbl_isolates: Contains MIC test results ESBL status isolate. mutate(esbl = ...): Converts target column ordered factor classification.","code":"# Load required libraries library(AMR) library(tidymodels) # View the esbl_isolates data set esbl_isolates #> # A tibble: 500 × 19 #> esbl genus AMC AMP TZP CXM FOX CTX CAZ GEN TOB TMP SXT #>