1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-26 22:06:11 +01:00

fix coercing NA to custom codes, fixes #107

This commit is contained in:
dr. M.S. (Matthijs) Berends 2023-05-08 13:04:18 +02:00
parent 9de19fdc49
commit bf08d136a0
9 changed files with 19719 additions and 56 deletions

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 2.0.0.9013 Version: 2.0.0.9014
Date: 2023-04-21 Date: 2023-05-08
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,10 +1,11 @@
# AMR 2.0.0.9013 # AMR 2.0.0.9014
## Changed ## Changed
* formatting fix for `sir_interpretation_history()` * formatting fix for `sir_interpretation_history()`
* Fixed some WHONET codes for microorganisms and consequently a couple of entries in `clinical_breakpoints` * Fixed some WHONET codes for microorganisms and consequently a couple of entries in `clinical_breakpoints`
* Added microbial codes for Gram-negative/positive anaerobic bacteria * Added microbial codes for Gram-negative/positive anaerobic bacteria
* `mo_rank()` now returns `NA` for 'unknown' microorganisms (`B_ANAER`, `B_ANAER-NEG`, `B_ANAER-POS`, `B_GRAMN`, `B_GRAMP`, `F_FUNGUS`, `F_YEAST`, and `UNKNOWN`) * `mo_rank()` now returns `NA` for 'unknown' microorganisms (`B_ANAER`, `B_ANAER-NEG`, `B_ANAER-POS`, `B_GRAMN`, `B_GRAMP`, `F_FUNGUS`, `F_YEAST`, and `UNKNOWN`)
* Fixed a bug for `as.mo()` that led to coercion of `NA` values when using custom microorganism codes
# AMR 2.0.0 # AMR 2.0.0

8
R/mo.R
View File

@ -214,10 +214,10 @@ as.mo <- function(x,
# From known codes ---- # From known codes ----
out[is.na(out) & toupper(x) %in% AMR::microorganisms.codes$code] <- AMR::microorganisms.codes$mo[match(toupper(x)[is.na(out) & toupper(x) %in% AMR::microorganisms.codes$code], AMR::microorganisms.codes$code)] out[is.na(out) & toupper(x) %in% AMR::microorganisms.codes$code] <- AMR::microorganisms.codes$mo[match(toupper(x)[is.na(out) & toupper(x) %in% AMR::microorganisms.codes$code], AMR::microorganisms.codes$code)]
# From SNOMED ---- # From SNOMED ----
if (any(is.na(out) & !is.na(x)) && any(is.na(out) & x %in% unlist(AMR_env$MO_lookup$snomed), na.rm = TRUE)) { # based on this extremely fast gem: https://stackoverflow.com/a/11002456/4575331
# found this extremely fast gem here: https://stackoverflow.com/a/11002456/4575331 snomeds <- unlist(AMR_env$MO_lookup$snomed)
out[is.na(out) & x %in% unlist(AMR_env$MO_lookup$snomed)] <- AMR_env$MO_lookup$mo[rep(seq_along(AMR_env$MO_lookup$snomed), vapply(FUN.VALUE = double(1), AMR_env$MO_lookup$snomed, length))[match(x[is.na(out) & x %in% unlist(AMR_env$MO_lookup$snomed)], unlist(AMR_env$MO_lookup$snomed))]] snomeds <- snomeds[!is.na(snomeds)]
} out[is.na(out) & x %in% snomeds] <- AMR_env$MO_lookup$mo[rep(seq_along(AMR_env$MO_lookup$snomed), vapply(FUN.VALUE = double(1), AMR_env$MO_lookup$snomed, length))[match(x[is.na(out) & x %in% snomeds], snomeds)]]
# From other familiar output ---- # From other familiar output ----
# such as Salmonella groups, colloquial names, etc. # such as Salmonella groups, colloquial names, etc.
out[is.na(out)] <- convert_colloquial_input(x[is.na(out)]) out[is.na(out)] <- convert_colloquial_input(x[is.na(out)])

Binary file not shown.

View File

@ -31,7 +31,7 @@
# source("data-raw/_pre_commit_hook.R") # source("data-raw/_pre_commit_hook.R")
library(dplyr, warn.conflicts = FALSE) library(dplyr, warn.conflicts = FALSE)
try(detach("package:data.table", unload = TRUE), silent = TRUE) try(detach("package:data.table", unload = TRUE), silent = TRUE) # to prevent like() to precede over AMR::like
devtools::load_all(quiet = TRUE) devtools::load_all(quiet = TRUE)
suppressMessages(set_AMR_locale("English")) suppressMessages(set_AMR_locale("English"))
@ -165,12 +165,12 @@ MO_PREVALENT_GENERA <- c(
"Halococcus", "Hendersonula", "Heterophyes", "Histomonas", "Histoplasma", "Hymenolepis", "Hypomyces", "Halococcus", "Hendersonula", "Heterophyes", "Histomonas", "Histoplasma", "Hymenolepis", "Hypomyces",
"Hysterothylacium", "Leishmania", "Malassezia", "Malbranchea", "Metagonimus", "Meyerozyma", "Microsporidium", "Hysterothylacium", "Leishmania", "Malassezia", "Malbranchea", "Metagonimus", "Meyerozyma", "Microsporidium",
"Microsporum", "Mortierella", "Mucor", "Mycocentrospora", "Necator", "Nectria", "Ochroconis", "Oesophagostomum", "Microsporum", "Mortierella", "Mucor", "Mycocentrospora", "Necator", "Nectria", "Ochroconis", "Oesophagostomum",
"Oidiodendron", "Opisthorchis", "Pediculus", "Phlebotomus", "Phoma", "Pichia", "Piedraia", "Pithomyces", "Oidiodendron", "Opisthorchis", "Pediculus", "Penicillium", "Phlebotomus", "Phoma", "Pichia", "Piedraia", "Pithomyces",
"Pityrosporum", "Pneumocystis", "Pseudallescheria", "Pseudoterranova", "Pulex", "Rhizomucor", "Rhizopus", "Pityrosporum", "Pneumocystis", "Pseudallescheria", "Pseudoterranova", "Pulex", "Rhizomucor", "Rhizopus",
"Rhodotorula", "Saccharomyces", "Sarcoptes", "Scolecobasidium", "Scopulariopsis", "Scytalidium", "Spirometra", "Rhodotorula", "Saccharomyces", "Sarcoptes", "Scolecobasidium", "Scopulariopsis", "Scytalidium", "Spirometra",
"Sporobolomyces", "Stachybotrys", "Strongyloides", "Syngamus", "Taenia", "Toxocara", "Trichinella", "Trichobilharzia", "Sporobolomyces", "Stachybotrys", "Strongyloides", "Syngamus", "Taenia", "Talaromyces", "Toxocara", "Trichinella",
"Trichoderma", "Trichomonas", "Trichophyton", "Trichosporon", "Trichostrongylus", "Trichuris", "Tritirachium", "Trichobilharzia", "Trichoderma", "Trichomonas", "Trichophyton", "Trichosporon", "Trichostrongylus", "Trichuris",
"Trombicula", "Trypanosoma", "Tunga", "Wuchereria" "Tritirachium", "Trombicula", "Trypanosoma", "Tunga", "Wuchereria"
) )
# antibiotic groups # antibiotic groups

19616
data-raw/bacdive.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@ -147,23 +147,6 @@ df_remove_nonASCII <- function(df) {
AMR:::dataset_UTF8_to_ASCII() AMR:::dataset_UTF8_to_ASCII()
} }
abbreviate_mo <- function(x, minlength = 5, prefix = "", hyphen_as_space = FALSE, ...) {
if (hyphen_as_space == TRUE) {
x <- gsub("-", " ", x, fixed = TRUE)
}
# keep a starting Latin ae
suppressWarnings(
gsub("^ae", "\u00E6\u00E6", x, ignore.case = TRUE) %>%
abbreviate(
minlength = minlength,
use.classes = TRUE,
method = "both.sides", ...
) %>%
paste0(prefix, .) %>%
toupper() %>%
gsub("(\u00C6|\u00E6)+", "AE", .)
)
}
# to retrieve LPSN and authors from LPSN website # to retrieve LPSN and authors from LPSN website
get_lpsn_and_author <- function(rank, name) { get_lpsn_and_author <- function(rank, name) {
@ -936,8 +919,8 @@ mo_phylum <- taxonomy %>%
) %>% ) %>%
group_by(kingdom) %>% group_by(kingdom) %>%
mutate( mutate(
mo_phylum8 = abbreviate_mo(phylum, minlength = 8, prefix = "[PHL]_"), mo_phylum8 = AMR:::abbreviate_mo(phylum, minlength = 8, prefix = "[PHL]_"),
mo_phylum9 = abbreviate_mo(phylum, minlength = 9, prefix = "[PHL]_"), mo_phylum9 = AMR:::abbreviate_mo(phylum, minlength = 9, prefix = "[PHL]_"),
mo_phylum = ifelse(!is.na(mo_old), mo_old, mo_phylum8), mo_phylum = ifelse(!is.na(mo_old), mo_old, mo_phylum8),
mo_duplicated = duplicated(mo_phylum), mo_duplicated = duplicated(mo_phylum),
mo_phylum = ifelse(mo_duplicated, mo_phylum9, mo_phylum), mo_phylum = ifelse(mo_duplicated, mo_phylum9, mo_phylum),
@ -963,8 +946,8 @@ mo_class <- taxonomy %>%
) %>% ) %>%
group_by(kingdom) %>% group_by(kingdom) %>%
mutate( mutate(
mo_class8 = abbreviate_mo(class, minlength = 8, prefix = "[CLS]_"), mo_class8 = AMR:::abbreviate_mo(class, minlength = 8, prefix = "[CLS]_"),
mo_class9 = abbreviate_mo(class, minlength = 9, prefix = "[CLS]_"), mo_class9 = AMR:::abbreviate_mo(class, minlength = 9, prefix = "[CLS]_"),
mo_class = ifelse(!is.na(mo_old), mo_old, mo_class8), mo_class = ifelse(!is.na(mo_old), mo_old, mo_class8),
mo_duplicated = duplicated(mo_class), mo_duplicated = duplicated(mo_class),
mo_class = ifelse(mo_duplicated, mo_class9, mo_class), mo_class = ifelse(mo_duplicated, mo_class9, mo_class),
@ -990,8 +973,8 @@ mo_order <- taxonomy %>%
) %>% ) %>%
group_by(kingdom) %>% group_by(kingdom) %>%
mutate( mutate(
mo_order8 = abbreviate_mo(order, minlength = 8, prefix = "[ORD]_"), mo_order8 = AMR:::abbreviate_mo(order, minlength = 8, prefix = "[ORD]_"),
mo_order9 = abbreviate_mo(order, minlength = 9, prefix = "[ORD]_"), mo_order9 = AMR:::abbreviate_mo(order, minlength = 9, prefix = "[ORD]_"),
mo_order = ifelse(!is.na(mo_old), mo_old, mo_order8), mo_order = ifelse(!is.na(mo_old), mo_old, mo_order8),
mo_duplicated = duplicated(mo_order), mo_duplicated = duplicated(mo_order),
mo_order = ifelse(mo_duplicated, mo_order9, mo_order), mo_order = ifelse(mo_duplicated, mo_order9, mo_order),
@ -1017,8 +1000,8 @@ mo_family <- taxonomy %>%
) %>% ) %>%
group_by(kingdom) %>% group_by(kingdom) %>%
mutate( mutate(
mo_family8 = abbreviate_mo(family, minlength = 8, prefix = "[FAM]_"), mo_family8 = AMR:::abbreviate_mo(family, minlength = 8, prefix = "[FAM]_"),
mo_family9 = abbreviate_mo(family, minlength = 9, prefix = "[FAM]_"), mo_family9 = AMR:::abbreviate_mo(family, minlength = 9, prefix = "[FAM]_"),
mo_family = ifelse(!is.na(mo_old), mo_old, mo_family8), mo_family = ifelse(!is.na(mo_old), mo_old, mo_family8),
mo_duplicated = duplicated(mo_family), mo_duplicated = duplicated(mo_family),
mo_family = ifelse(mo_duplicated, mo_family9, mo_family), mo_family = ifelse(mo_duplicated, mo_family9, mo_family),
@ -1046,11 +1029,11 @@ mo_genus <- taxonomy %>%
group_by(kingdom) %>% group_by(kingdom) %>%
# generate new MO codes for genus and set the right one # generate new MO codes for genus and set the right one
mutate( mutate(
mo_genus_new5 = abbreviate_mo(genus, 5), mo_genus_new5 = AMR:::abbreviate_mo(genus, 5),
mo_genus_new5b = paste0(abbreviate_mo(genus, 5), 1), mo_genus_new5b = paste0(AMR:::abbreviate_mo(genus, 5), 1),
mo_genus_new6 = abbreviate_mo(genus, 6), mo_genus_new6 = AMR:::abbreviate_mo(genus, 6),
mo_genus_new7 = abbreviate_mo(genus, 7), mo_genus_new7 = AMR:::abbreviate_mo(genus, 7),
mo_genus_new8 = abbreviate_mo(genus, 8), mo_genus_new8 = AMR:::abbreviate_mo(genus, 8),
mo_genus_new = case_when( mo_genus_new = case_when(
!is.na(mo_genus_old) ~ mo_genus_old, !is.na(mo_genus_old) ~ mo_genus_old,
!mo_genus_new5 %in% mo_genus_old ~ mo_genus_new5, !mo_genus_new5 %in% mo_genus_old ~ mo_genus_new5,
@ -1092,12 +1075,12 @@ mo_species <- taxonomy %>%
distinct(kingdom, genus, species, .keep_all = TRUE) %>% distinct(kingdom, genus, species, .keep_all = TRUE) %>%
group_by(kingdom, genus) %>% group_by(kingdom, genus) %>%
mutate( mutate(
mo_species_new4 = abbreviate_mo(species, 4, hyphen_as_space = TRUE), mo_species_new4 = AMR:::abbreviate_mo(species, 4, hyphen_as_space = TRUE),
mo_species_new5 = abbreviate_mo(species, 5, hyphen_as_space = TRUE), mo_species_new5 = AMR:::abbreviate_mo(species, 5, hyphen_as_space = TRUE),
mo_species_new5b = paste0(abbreviate_mo(species, 5, hyphen_as_space = TRUE), 1), mo_species_new5b = paste0(AMR:::abbreviate_mo(species, 5, hyphen_as_space = TRUE), 1),
mo_species_new6 = abbreviate_mo(species, 6, hyphen_as_space = TRUE), mo_species_new6 = AMR:::abbreviate_mo(species, 6, hyphen_as_space = TRUE),
mo_species_new7 = abbreviate_mo(species, 7, hyphen_as_space = TRUE), mo_species_new7 = AMR:::abbreviate_mo(species, 7, hyphen_as_space = TRUE),
mo_species_new8 = abbreviate_mo(species, 8, hyphen_as_space = TRUE), mo_species_new8 = AMR:::abbreviate_mo(species, 8, hyphen_as_space = TRUE),
mo_species_new = case_when( mo_species_new = case_when(
!is.na(mo_species_old) ~ mo_species_old, !is.na(mo_species_old) ~ mo_species_old,
!mo_species_new4 %in% mo_species_old ~ mo_species_new4, !mo_species_new4 %in% mo_species_old ~ mo_species_new4,
@ -1141,12 +1124,12 @@ mo_subspecies <- taxonomy %>%
distinct(kingdom, genus, species, subspecies, .keep_all = TRUE) %>% distinct(kingdom, genus, species, subspecies, .keep_all = TRUE) %>%
group_by(kingdom, genus, species) %>% group_by(kingdom, genus, species) %>%
mutate( mutate(
mo_subspecies_new4 = abbreviate_mo(subspecies, 4, hyphen_as_space = TRUE), mo_subspecies_new4 = AMR:::abbreviate_mo(subspecies, 4, hyphen_as_space = TRUE),
mo_subspecies_new5 = abbreviate_mo(subspecies, 5, hyphen_as_space = TRUE), mo_subspecies_new5 = AMR:::abbreviate_mo(subspecies, 5, hyphen_as_space = TRUE),
mo_subspecies_new5b = paste0(abbreviate_mo(subspecies, 5, hyphen_as_space = TRUE), 1), mo_subspecies_new5b = paste0(AMR:::abbreviate_mo(subspecies, 5, hyphen_as_space = TRUE), 1),
mo_subspecies_new6 = abbreviate_mo(subspecies, 6, hyphen_as_space = TRUE), mo_subspecies_new6 = AMR:::abbreviate_mo(subspecies, 6, hyphen_as_space = TRUE),
mo_subspecies_new7 = abbreviate_mo(subspecies, 7, hyphen_as_space = TRUE), mo_subspecies_new7 = AMR:::abbreviate_mo(subspecies, 7, hyphen_as_space = TRUE),
mo_subspecies_new8 = abbreviate_mo(subspecies, 8, hyphen_as_space = TRUE), mo_subspecies_new8 = AMR:::abbreviate_mo(subspecies, 8, hyphen_as_space = TRUE),
mo_subspecies_new = case_when( mo_subspecies_new = case_when(
!is.na(mo_subspecies_old) ~ mo_subspecies_old, !is.na(mo_subspecies_old) ~ mo_subspecies_old,
!mo_subspecies_new4 %in% mo_subspecies_old ~ mo_subspecies_new4, !mo_subspecies_new4 %in% mo_subspecies_old ~ mo_subspecies_new4,
@ -1348,6 +1331,69 @@ taxonomy <- taxonomy %>%
left_join(snomed, by = "fullname") left_join(snomed, by = "fullname")
# Add oxygen tolerance (aerobe/anaerobe) ----------------------------------
# We will use the BacDive data base for this:
# - go to https://bacdive.dsmz.de/advsearch and filter 'Oxygen tolerance' on "*"
# - click on the 'Download tabel as CSV' button
#
bacdive <- vroom::vroom("data-raw/bacdive.csv", skip = 2) %>%
select(species, oxygen = `Oxygen tolerance`)
bacdive <- bacdive %>%
# fill in missing species from previous rows
mutate(species = ifelse(is.na(species), lag(species), species)) %>%
filter(!is.na(species), !is.na(oxygen), oxygen %unlike% "tolerant")
bacdive <- bacdive %>%
# now determine type per species
group_by(species) %>%
summarise(oxygen_tolerance = case_when(any(oxygen %like% "facultative") ~ "facultative anaerobe",
all(oxygen == "microaerophile") ~ "microaerophile",
all(oxygen %in% c("anaerobe", "obligate anaerobe")) ~ "anaerobe",
all(oxygen %in% c("anaerobe", "obligate anaerobe", "microaerophile")) ~ "anaerobe/microaerophile",
all(oxygen %in% c("aerobe", "obligate aerobe")) ~ "aerobe",
all(!oxygen %in% c("anaerobe", "obligate anaerobe")) ~ "aerobe",
all(c("aerobe", "anaerobe") %in% oxygen) ~ "facultative anaerobe",
TRUE ~ NA_character_))
bacdive_genus <- bacdive %>%
mutate(genus = gsub("^([A-Za-z]+) .*", "\\1", species), oxygen = oxygen_tolerance) %>%
group_by(species = genus) %>%
summarise(oxygen_tolerance = case_when(any(oxygen == "facultative anaerobe") ~ "facultative anaerobe",
any(oxygen == "anaerobe/microaerophile") ~ "anaerobe/microaerophile",
all(oxygen == "microaerophile") ~ "microaerophile",
all(oxygen == "anaerobe") ~ "anaerobe",
all(oxygen == "aerobe") ~ "aerobe",
TRUE ~ "facultative anaerobe"))
bacdive <- bacdive %>%
filter(species %unlike% " sp[.]") %>%
bind_rows(bacdive_genus) %>%
arrange(species) %>%
mutate(mo = as.mo(species, keep_synonyms = FALSE))
other_species <- microorganisms %>%
filter(kingdom == "Bacteria", rank == "species", !mo %in% bacdive$mo, genus %in% bacdive$species) %>%
select(species = fullname, genus, mo2 = mo) %>%
left_join(bacdive, by = c("genus" = "species")) %>%
mutate(oxygen_tolerance = ifelse(oxygen_tolerance %in% c("aerobe", "anaerobe", "microaerophile", "anaerobe/microaerophile"),
oxygen_tolerance,
paste("likely", oxygen_tolerance))) %>%
select(species, oxygen_tolerance, mo = mo2)
bacdive <- bacdive %>%
bind_rows(other_species) %>%
arrange(species)
taxonomy <- taxonomy %>%
left_join(
bacdive %>%
select(-species),
by = "mo") %>%
# TODO look up synonyms and fill them in as well
# Clean data set ---------------------------------------------------------- # Clean data set ----------------------------------------------------------
# format to tibble and check again for invalid characters # format to tibble and check again for invalid characters

View File

@ -160,7 +160,7 @@ Furthermore,
\item Any genus present in the \strong{established} list also has \code{prevalence = 1.0} in the \link{microorganisms} data set; \item Any genus present in the \strong{established} list also has \code{prevalence = 1.0} in the \link{microorganisms} data set;
\item Any other genus present in the \strong{putative} list has \code{prevalence = 1.25} in the \link{microorganisms} data set; \item Any other genus present in the \strong{putative} list has \code{prevalence = 1.25} in the \link{microorganisms} data set;
\item Any other species or subspecies of which the genus is present in the two aforementioned groups, has \code{prevalence = 1.5} in the \link{microorganisms} data set; \item Any other species or subspecies of which the genus is present in the two aforementioned groups, has \code{prevalence = 1.5} in the \link{microorganisms} data set;
\item Any \emph{non-bacterial} genus, species or subspecies of which the genus is present in the following list, has \code{prevalence = 1.5} in the \link{microorganisms} data set: \emph{Absidia}, \emph{Acanthamoeba}, \emph{Acremonium}, \emph{Aedes}, \emph{Alternaria}, \emph{Amoeba}, \emph{Ancylostoma}, \emph{Angiostrongylus}, \emph{Anisakis}, \emph{Anopheles}, \emph{Apophysomyces}, \emph{Aspergillus}, \emph{Aureobasidium}, \emph{Basidiobolus}, \emph{Beauveria}, \emph{Blastocystis}, \emph{Blastomyces}, \emph{Candida}, \emph{Capillaria}, \emph{Chaetomium}, \emph{Chrysonilia}, \emph{Cladophialophora}, \emph{Cladosporium}, \emph{Conidiobolus}, \emph{Contracaecum}, \emph{Cordylobia}, \emph{Cryptococcus}, \emph{Curvularia}, \emph{Demodex}, \emph{Dermatobia}, \emph{Dientamoeba}, \emph{Diphyllobothrium}, \emph{Dirofilaria}, \emph{Echinostoma}, \emph{Entamoeba}, \emph{Enterobius}, \emph{Exophiala}, \emph{Exserohilum}, \emph{Fasciola}, \emph{Fonsecaea}, \emph{Fusarium}, \emph{Giardia}, \emph{Haloarcula}, \emph{Halobacterium}, \emph{Halococcus}, \emph{Hendersonula}, \emph{Heterophyes}, \emph{Histomonas}, \emph{Histoplasma}, \emph{Hymenolepis}, \emph{Hypomyces}, \emph{Hysterothylacium}, \emph{Leishmania}, \emph{Malassezia}, \emph{Malbranchea}, \emph{Metagonimus}, \emph{Meyerozyma}, \emph{Microsporidium}, \emph{Microsporum}, \emph{Mortierella}, \emph{Mucor}, \emph{Mycocentrospora}, \emph{Necator}, \emph{Nectria}, \emph{Ochroconis}, \emph{Oesophagostomum}, \emph{Oidiodendron}, \emph{Opisthorchis}, \emph{Pediculus}, \emph{Phlebotomus}, \emph{Phoma}, \emph{Pichia}, \emph{Piedraia}, \emph{Pithomyces}, \emph{Pityrosporum}, \emph{Pneumocystis}, \emph{Pseudallescheria}, \emph{Pseudoterranova}, \emph{Pulex}, \emph{Rhizomucor}, \emph{Rhizopus}, \emph{Rhodotorula}, \emph{Saccharomyces}, \emph{Sarcoptes}, \emph{Scolecobasidium}, \emph{Scopulariopsis}, \emph{Scytalidium}, \emph{Spirometra}, \emph{Sporobolomyces}, \emph{Stachybotrys}, \emph{Strongyloides}, \emph{Syngamus}, \emph{Taenia}, \emph{Toxocara}, \emph{Trichinella}, \emph{Trichobilharzia}, \emph{Trichoderma}, \emph{Trichomonas}, \emph{Trichophyton}, \emph{Trichosporon}, \emph{Trichostrongylus}, \emph{Trichuris}, \emph{Tritirachium}, \emph{Trombicula}, \emph{Trypanosoma}, \emph{Tunga}, or \emph{Wuchereria}; \item Any \emph{non-bacterial} genus, species or subspecies of which the genus is present in the following list, has \code{prevalence = 1.5} in the \link{microorganisms} data set: \emph{Absidia}, \emph{Acanthamoeba}, \emph{Acremonium}, \emph{Aedes}, \emph{Alternaria}, \emph{Amoeba}, \emph{Ancylostoma}, \emph{Angiostrongylus}, \emph{Anisakis}, \emph{Anopheles}, \emph{Apophysomyces}, \emph{Aspergillus}, \emph{Aureobasidium}, \emph{Basidiobolus}, \emph{Beauveria}, \emph{Blastocystis}, \emph{Blastomyces}, \emph{Candida}, \emph{Capillaria}, \emph{Chaetomium}, \emph{Chrysonilia}, \emph{Cladophialophora}, \emph{Cladosporium}, \emph{Conidiobolus}, \emph{Contracaecum}, \emph{Cordylobia}, \emph{Cryptococcus}, \emph{Curvularia}, \emph{Demodex}, \emph{Dermatobia}, \emph{Dientamoeba}, \emph{Diphyllobothrium}, \emph{Dirofilaria}, \emph{Echinostoma}, \emph{Entamoeba}, \emph{Enterobius}, \emph{Exophiala}, \emph{Exserohilum}, \emph{Fasciola}, \emph{Fonsecaea}, \emph{Fusarium}, \emph{Giardia}, \emph{Haloarcula}, \emph{Halobacterium}, \emph{Halococcus}, \emph{Hendersonula}, \emph{Heterophyes}, \emph{Histomonas}, \emph{Histoplasma}, \emph{Hymenolepis}, \emph{Hypomyces}, \emph{Hysterothylacium}, \emph{Leishmania}, \emph{Malassezia}, \emph{Malbranchea}, \emph{Metagonimus}, \emph{Meyerozyma}, \emph{Microsporidium}, \emph{Microsporum}, \emph{Mortierella}, \emph{Mucor}, \emph{Mycocentrospora}, \emph{Necator}, \emph{Nectria}, \emph{Ochroconis}, \emph{Oesophagostomum}, \emph{Oidiodendron}, \emph{Opisthorchis}, \emph{Pediculus}, \emph{Penicillium}, \emph{Phlebotomus}, \emph{Phoma}, \emph{Pichia}, \emph{Piedraia}, \emph{Pithomyces}, \emph{Pityrosporum}, \emph{Pneumocystis}, \emph{Pseudallescheria}, \emph{Pseudoterranova}, \emph{Pulex}, \emph{Rhizomucor}, \emph{Rhizopus}, \emph{Rhodotorula}, \emph{Saccharomyces}, \emph{Sarcoptes}, \emph{Scolecobasidium}, \emph{Scopulariopsis}, \emph{Scytalidium}, \emph{Spirometra}, \emph{Sporobolomyces}, \emph{Stachybotrys}, \emph{Strongyloides}, \emph{Syngamus}, \emph{Taenia}, \emph{Talaromyces}, \emph{Toxocara}, \emph{Trichinella}, \emph{Trichobilharzia}, \emph{Trichoderma}, \emph{Trichomonas}, \emph{Trichophyton}, \emph{Trichosporon}, \emph{Trichostrongylus}, \emph{Trichuris}, \emph{Tritirachium}, \emph{Trombicula}, \emph{Trypanosoma}, \emph{Tunga}, or \emph{Wuchereria};
\item All other records have \code{prevalence = 2.0} in the \link{microorganisms} data set. \item All other records have \code{prevalence = 2.0} in the \link{microorganisms} data set.
} }

View File

@ -48,7 +48,7 @@ Furthermore,
\item Any genus present in the \strong{established} list also has \code{prevalence = 1.0} in the \link{microorganisms} data set; \item Any genus present in the \strong{established} list also has \code{prevalence = 1.0} in the \link{microorganisms} data set;
\item Any other genus present in the \strong{putative} list has \code{prevalence = 1.25} in the \link{microorganisms} data set; \item Any other genus present in the \strong{putative} list has \code{prevalence = 1.25} in the \link{microorganisms} data set;
\item Any other species or subspecies of which the genus is present in the two aforementioned groups, has \code{prevalence = 1.5} in the \link{microorganisms} data set; \item Any other species or subspecies of which the genus is present in the two aforementioned groups, has \code{prevalence = 1.5} in the \link{microorganisms} data set;
\item Any \emph{non-bacterial} genus, species or subspecies of which the genus is present in the following list, has \code{prevalence = 1.5} in the \link{microorganisms} data set: \emph{Absidia}, \emph{Acanthamoeba}, \emph{Acremonium}, \emph{Aedes}, \emph{Alternaria}, \emph{Amoeba}, \emph{Ancylostoma}, \emph{Angiostrongylus}, \emph{Anisakis}, \emph{Anopheles}, \emph{Apophysomyces}, \emph{Aspergillus}, \emph{Aureobasidium}, \emph{Basidiobolus}, \emph{Beauveria}, \emph{Blastocystis}, \emph{Blastomyces}, \emph{Candida}, \emph{Capillaria}, \emph{Chaetomium}, \emph{Chrysonilia}, \emph{Cladophialophora}, \emph{Cladosporium}, \emph{Conidiobolus}, \emph{Contracaecum}, \emph{Cordylobia}, \emph{Cryptococcus}, \emph{Curvularia}, \emph{Demodex}, \emph{Dermatobia}, \emph{Dientamoeba}, \emph{Diphyllobothrium}, \emph{Dirofilaria}, \emph{Echinostoma}, \emph{Entamoeba}, \emph{Enterobius}, \emph{Exophiala}, \emph{Exserohilum}, \emph{Fasciola}, \emph{Fonsecaea}, \emph{Fusarium}, \emph{Giardia}, \emph{Haloarcula}, \emph{Halobacterium}, \emph{Halococcus}, \emph{Hendersonula}, \emph{Heterophyes}, \emph{Histomonas}, \emph{Histoplasma}, \emph{Hymenolepis}, \emph{Hypomyces}, \emph{Hysterothylacium}, \emph{Leishmania}, \emph{Malassezia}, \emph{Malbranchea}, \emph{Metagonimus}, \emph{Meyerozyma}, \emph{Microsporidium}, \emph{Microsporum}, \emph{Mortierella}, \emph{Mucor}, \emph{Mycocentrospora}, \emph{Necator}, \emph{Nectria}, \emph{Ochroconis}, \emph{Oesophagostomum}, \emph{Oidiodendron}, \emph{Opisthorchis}, \emph{Pediculus}, \emph{Phlebotomus}, \emph{Phoma}, \emph{Pichia}, \emph{Piedraia}, \emph{Pithomyces}, \emph{Pityrosporum}, \emph{Pneumocystis}, \emph{Pseudallescheria}, \emph{Pseudoterranova}, \emph{Pulex}, \emph{Rhizomucor}, \emph{Rhizopus}, \emph{Rhodotorula}, \emph{Saccharomyces}, \emph{Sarcoptes}, \emph{Scolecobasidium}, \emph{Scopulariopsis}, \emph{Scytalidium}, \emph{Spirometra}, \emph{Sporobolomyces}, \emph{Stachybotrys}, \emph{Strongyloides}, \emph{Syngamus}, \emph{Taenia}, \emph{Toxocara}, \emph{Trichinella}, \emph{Trichobilharzia}, \emph{Trichoderma}, \emph{Trichomonas}, \emph{Trichophyton}, \emph{Trichosporon}, \emph{Trichostrongylus}, \emph{Trichuris}, \emph{Tritirachium}, \emph{Trombicula}, \emph{Trypanosoma}, \emph{Tunga}, or \emph{Wuchereria}; \item Any \emph{non-bacterial} genus, species or subspecies of which the genus is present in the following list, has \code{prevalence = 1.5} in the \link{microorganisms} data set: \emph{Absidia}, \emph{Acanthamoeba}, \emph{Acremonium}, \emph{Aedes}, \emph{Alternaria}, \emph{Amoeba}, \emph{Ancylostoma}, \emph{Angiostrongylus}, \emph{Anisakis}, \emph{Anopheles}, \emph{Apophysomyces}, \emph{Aspergillus}, \emph{Aureobasidium}, \emph{Basidiobolus}, \emph{Beauveria}, \emph{Blastocystis}, \emph{Blastomyces}, \emph{Candida}, \emph{Capillaria}, \emph{Chaetomium}, \emph{Chrysonilia}, \emph{Cladophialophora}, \emph{Cladosporium}, \emph{Conidiobolus}, \emph{Contracaecum}, \emph{Cordylobia}, \emph{Cryptococcus}, \emph{Curvularia}, \emph{Demodex}, \emph{Dermatobia}, \emph{Dientamoeba}, \emph{Diphyllobothrium}, \emph{Dirofilaria}, \emph{Echinostoma}, \emph{Entamoeba}, \emph{Enterobius}, \emph{Exophiala}, \emph{Exserohilum}, \emph{Fasciola}, \emph{Fonsecaea}, \emph{Fusarium}, \emph{Giardia}, \emph{Haloarcula}, \emph{Halobacterium}, \emph{Halococcus}, \emph{Hendersonula}, \emph{Heterophyes}, \emph{Histomonas}, \emph{Histoplasma}, \emph{Hymenolepis}, \emph{Hypomyces}, \emph{Hysterothylacium}, \emph{Leishmania}, \emph{Malassezia}, \emph{Malbranchea}, \emph{Metagonimus}, \emph{Meyerozyma}, \emph{Microsporidium}, \emph{Microsporum}, \emph{Mortierella}, \emph{Mucor}, \emph{Mycocentrospora}, \emph{Necator}, \emph{Nectria}, \emph{Ochroconis}, \emph{Oesophagostomum}, \emph{Oidiodendron}, \emph{Opisthorchis}, \emph{Pediculus}, \emph{Penicillium}, \emph{Phlebotomus}, \emph{Phoma}, \emph{Pichia}, \emph{Piedraia}, \emph{Pithomyces}, \emph{Pityrosporum}, \emph{Pneumocystis}, \emph{Pseudallescheria}, \emph{Pseudoterranova}, \emph{Pulex}, \emph{Rhizomucor}, \emph{Rhizopus}, \emph{Rhodotorula}, \emph{Saccharomyces}, \emph{Sarcoptes}, \emph{Scolecobasidium}, \emph{Scopulariopsis}, \emph{Scytalidium}, \emph{Spirometra}, \emph{Sporobolomyces}, \emph{Stachybotrys}, \emph{Strongyloides}, \emph{Syngamus}, \emph{Taenia}, \emph{Talaromyces}, \emph{Toxocara}, \emph{Trichinella}, \emph{Trichobilharzia}, \emph{Trichoderma}, \emph{Trichomonas}, \emph{Trichophyton}, \emph{Trichosporon}, \emph{Trichostrongylus}, \emph{Trichuris}, \emph{Tritirachium}, \emph{Trombicula}, \emph{Trypanosoma}, \emph{Tunga}, or \emph{Wuchereria};
\item All other records have \code{prevalence = 2.0} in the \link{microorganisms} data set. \item All other records have \code{prevalence = 2.0} in the \link{microorganisms} data set.
} }