1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-09 02:03:04 +02:00

Added function n_rsi

This commit is contained in:
2018-05-02 14:56:25 +02:00
parent e5ae7b98ac
commit c0fc82c794
17 changed files with 292 additions and 171 deletions

View File

@ -50,6 +50,7 @@ table with edited variables of antibiotics.
Apply expert rules (like intrinsic resistance), as defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST, \url{http://eucast.org}), see \emph{Source}.
}
\examples{
a <- EUCAST_rules(septic_patients)
a <- data.frame(bactid = c("STAAUR", # Staphylococcus aureus
"ENCFAE", # Enterococcus faecalis
"ESCCOL", # Escherichia coli

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

@ -2,49 +2,106 @@
% Please edit documentation in R/rsi_analysis.R
\name{rsi}
\alias{rsi}
\alias{rsi_df}
\alias{n_rsi}
\title{Resistance of isolates}
\usage{
rsi(ab1, ab2 = NA, interpretation = "IR", minimum = 30, percent = FALSE,
info = FALSE, warning = FALSE)
rsi(ab1, ab2 = NA, interpretation = "IR", minimum = 30,
as_percent = FALSE, info = FALSE, warning = TRUE)
rsi_df(tbl, ab, interpretation = "IR", minimum = 30, as_percent = FALSE,
info = TRUE, warning = TRUE)
n_rsi(ab1, ab2 = NA)
}
\arguments{
\item{ab1, ab2}{list with interpretations of an antibiotic}
\item{ab1, ab2}{vector of antibiotic interpretations, they will be transformed internally with \code{\link{as.rsi}}}
\item{interpretation}{antimicrobial interpretation of which the portion must be calculated. Valid values are \code{"S"}, \code{"SI"}, \code{"I"}, \code{"IR"} or \code{"R"}.}
\item{minimum}{minimal amount of available isolates. Any number lower than \code{minimum} will return \code{NA} with a warning (when \code{warning = TRUE}).}
\item{percent}{return output as percent (text), will else (at default) be a double}
\item{as_percent}{return output as percent (text), will else (at default) be a double}
\item{info}{calculate the amount of available isolates and print it, like \code{n = 423}}
\item{warning}{show a warning when the available amount of isolates is below \code{minimum}}
\item{tbl}{\code{data.frame} containing columns with antibiotic interpretations.}
\item{ab}{character vector with 1, 2 or 3 antibiotics that occur as column names in \code{tbl}, like \code{ab = c("amox", "amcl")}}
}
\value{
Double or, when \code{percent = TRUE}, a character.
Double or, when \code{as_percent = TRUE}, a character.
}
\description{
This function can be used in \code{dplyr}s \code{\link[dplyr]{summarise}}, see \emph{Examples}. Calculate the percentage S, SI, I, IR or R of a vector of isolates.
This functions can be used to calculate the (co-)resistance of isolates (i.e. percentage S, SI, I, IR or R [of a vector] of isolates). The functions \code{rsi} and \code{n_rsi} can be used in \code{dplyr}s \code{\link[dplyr]{summarise}} and support grouped variables, see \emph{Examples}.
}
\details{
This function uses the \code{\link{rsi_df}} function internally.
Remember that you should filter your table to let it contain \strong{only first isolates}!
To calculate the probability (\emph{p}) of susceptibility of one antibiotic, we use this formula:
\if{html}{
\out{<div style="text-align: center">}\figure{mono_therapy.png}\out{</div>}
}
\if{latex}{
\deqn{p = \frac{\sum{ab1_S}}{\sum{ab1_{R|I|S}}}}
}
\cr
To calculate the probability (\emph{p}) of susceptibility of more antibiotics a combination therapy, we need to check whether one of them has a susceptible result (as numerator) and count all cases where all antibiotics were tested (as denominator). \cr
For two antibiotics:
\if{html}{
\out{<div style="text-align: center">}\figure{combi_therapy_2.png}\out{</div>}
}
\if{latex}{
\deqn{p = \frac{\sum{ab1_S}\mid{ab2_S}}{\sum{ab1_{R|I|S},ab2_{R|I|S}}}}
}
\cr
For three antibiotics:
\if{html}{
\out{<div style="text-align: center">}\figure{combi_therapy_3.png}\out{</div>}
}
\if{latex}{
\deqn{p = \frac{\sum{ab1_S}\mid{ab2_S}\mid{ab3_S}}{\sum{ab1_{R|I|S},ab2_{R|I|S},ab3_{R|I|S}}}}
}
}
\examples{
library(dplyr)
septic_patients \%>\%
group_by(hospital_id) \%>\%
summarise(cipro_susceptibility = rsi(cipr, interpretation = "S"),
n = n_rsi(cipr)) # n_rsi works like n_distinct in dplyr
septic_patients \%>\%
group_by(hospital_id) \%>\%
summarise(cipro_S = rsi(cipr, interpretation = "S",
as_percent = TRUE, warning = FALSE),
cipro_n = n_rsi(cipr),
genta_S = rsi(gent, interpretation = "S",
as_percent = TRUE, warning = FALSE),
genta_n = n_rsi(gent),
combination_S = rsi(cipr, gent, interpretation = "S",
as_percent = TRUE, warning = FALSE),
combination_n = n_rsi(cipr, gent))
# calculate resistance
rsi(septic_patients$amox)
# or susceptibility
rsi(septic_patients$amox, interpretation = "S")
# calculate co-resistance between amoxicillin/clav acid and gentamicin,
# so we can review that combination therapy does a lot more than mono therapy:
septic_patients \%>\% rsi_df(ab = "amcl", interpretation = "S") # = 67.8\%
septic_patients \%>\% rsi_df(ab = "gent", interpretation = "S") # = 69.1\%
septic_patients \%>\% rsi_df(ab = c("amcl", "gent"), interpretation = "S") # = 90.6\%
\dontrun{
tbl \%>\%
group_by(hospital) \%>\%
summarise(cipr = rsi(cipr))
tbl \%>\%
group_by(year, hospital) \%>\%
summarise(
isolates = n(),
cipro = rsi(cipr \%>\% as.rsi(), percent = TRUE),
amoxi = rsi(amox \%>\% as.rsi(), percent = TRUE))
rsi(as.rsi(isolates$amox))
rsi(as.rsi(isolates$amcl), interpretation = "S")
# calculate current empiric combination therapy of Helicobacter gastritis:
my_table \%>\%
filter(first_isolate == TRUE,
genus == "Helicobacter") \%>\%
rsi_df(ab = c("amox", "metr")) # amoxicillin with metronidazole
}
}
\keyword{antibiotics}

View File

@ -1,54 +0,0 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/rsi_analysis.R
\name{rsi_df}
\alias{rsi_df}
\title{Resistance of isolates in data.frame}
\usage{
rsi_df(tbl, ab, interpretation = "IR", minimum = 30, percent = FALSE,
info = TRUE, warning = TRUE)
}
\arguments{
\item{tbl}{\code{data.frame} containing columns with antibiotic interpretations.}
\item{ab}{character vector with 1, 2 or 3 antibiotics that occur as column names in \code{tbl}, like \code{ab = c("amox", "amcl")}}
\item{interpretation}{antimicrobial interpretation of which the portion must be calculated. Valid values are \code{"S"}, \code{"SI"}, \code{"I"}, \code{"IR"} or \code{"R"}.}
\item{minimum}{minimal amount of available isolates. Any number lower than \code{minimum} will return \code{NA} with a warning (when \code{warning = TRUE}).}
\item{percent}{return output as percent (text), will else (at default) be a double}
\item{info}{calculate the amount of available isolates and print it, like \code{n = 423}}
\item{warning}{show a warning when the available amount of isolates is below \code{minimum}}
}
\value{
Double or, when \code{percent = TRUE}, a character.
}
\description{
\strong{NOTE: use \code{\link{rsi}} in dplyr functions like \code{\link[dplyr]{summarise}}.} \cr Calculate the percentage of S, SI, I, IR or R of a \code{data.frame} containing isolates.
}
\details{
Remember that you should filter your table to let it contain \strong{only first isolates}!
}
\examples{
\dontrun{
rsi_df(tbl_with_bloodcultures, 'amcl')
rsi_df(tbl_with_bloodcultures, c('amcl', 'gent'), interpretation = 'IR')
library(dplyr)
# calculate current empiric therapy of Helicobacter gastritis:
my_table \%>\%
filter(first_isolate == TRUE,
genus == "Helicobacter") \%>\%
rsi_df(ab = c("amox", "metr"))
}
}
\seealso{
\code{\link{rsi}} for the function that can be used with \code{\link[dplyr]{summarise}} directly.
}
\keyword{antibiotics}
\keyword{isolate}
\keyword{isolates}
\keyword{rsi}