1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-27 23:04:39 +01:00

rename limit_mic_range() to rescale_mic()

This commit is contained in:
dr. M.S. (Matthijs) Berends 2024-05-24 15:07:41 +02:00
parent d214f74e25
commit c3ce1b551d
8 changed files with 22 additions and 22 deletions

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 2.1.1.9032 Version: 2.1.1.9033
Date: 2024-05-20 Date: 2024-05-24
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -235,7 +235,6 @@ export(kurtosis)
export(labels_sir_count) export(labels_sir_count)
export(left_join_microorganisms) export(left_join_microorganisms)
export(like) export(like)
export(limit_mic_range)
export(lincosamides) export(lincosamides)
export(lipoglycopeptides) export(lipoglycopeptides)
export(macrolides) export(macrolides)
@ -302,6 +301,7 @@ export(quinolones)
export(random_disk) export(random_disk)
export(random_mic) export(random_mic)
export(random_sir) export(random_sir)
export(rescale_mic)
export(reset_AMR_locale) export(reset_AMR_locale)
export(resistance) export(resistance)
export(resistance_predict) export(resistance_predict)

View File

@ -1,4 +1,4 @@
# AMR 2.1.1.9032 # AMR 2.1.1.9033
*(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support!)* *(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support!)*
@ -17,14 +17,14 @@ This package now supports not only tools for AMR data analysis in clinical setti
* `ab_url()` now supports retrieving the WHOCC url of their ATCvet pages * `ab_url()` now supports retrieving the WHOCC url of their ATCvet pages
* `as.sir()` now returns additional factor levels "N" for non-interpretable and "SDD" for susceptible dose-dependent. Users can now set their own criteria (using regular expressions) as to what should be considered S, I, R, SDD, and N. * `as.sir()` now returns additional factor levels "N" for non-interpretable and "SDD" for susceptible dose-dependent. Users can now set their own criteria (using regular expressions) as to what should be considered S, I, R, SDD, and N.
* The function group `scale_*_mic()`, namely: `scale_x_mic()`, `scale_y_mic()`, `scale_colour_mic()` and `scale_fill_mic()`. They are advanced ggplot2 extensions to allow easy plotting of MIC values. They allow for manual range definition and plotting missing intermediate log2 levels. * The function group `scale_*_mic()`, namely: `scale_x_mic()`, `scale_y_mic()`, `scale_colour_mic()` and `scale_fill_mic()`. They are advanced ggplot2 extensions to allow easy plotting of MIC values. They allow for manual range definition and plotting missing intermediate log2 levels.
* Function `limit_mic_range()`, which allows to limit MIC values to a manually set range. This is the powerhouse behind the `scale_*_mic()` functions, but it can be used by users directly to e.g. compare equality in MIC distributions by rescaling them to the same range first. * Function `rescale_mic()`, which allows to rescale MIC values to a manually set range. This is the powerhouse behind the `scale_*_mic()` functions, but it can be used by users directly to e.g. compare equality in MIC distributions by rescaling them to the same range first.
* Function `mo_group_members()` to retrieve the member microorganisms. For example, `mo_group_members("Strep group C")` returns a vector of all microorganisms that are in that group. * Function `mo_group_members()` to retrieve the member microorganisms of a microorganism group. For example, `mo_group_members("Strep group C")` returns a vector of all microorganisms that are in that group.
## Changed ## Changed
* For SIR interpretation, it is now possible to use column names for argument `ab` and `mo`: `as.sir(..., ab = "column1", mo = "column2")`. This greatly improves the flexibility for users. * For SIR interpretation, it is now possible to use column names for argument `ab` and `mo`: `as.sir(..., ab = "column1", mo = "column2")`. This greatly improves the flexibility for users.
* For MICs: * For MICs:
* Added as valid levels: 4096, 6 powers of 0.0625, and 5 powers of 192 (192, 384, 576, 768, 960) * Added as valid levels: 4096, 6 powers of 0.0625, and 5 powers of 192 (192, 384, 576, 768, 960)
* Added new argument `keep_operators` to `as.mic()`. This can be `"all"` (default), `"none"`, or `"edges"`. This argument is also available in the new `limit_mic_range()` and `scale_*_mic()` functions. * Added new argument `keep_operators` to `as.mic()`. This can be `"all"` (default), `"none"`, or `"edges"`. This argument is also available in the new `rescale_mic()` and `scale_*_mic()` functions.
* Comparisons of MIC values are now more strict. For example, `>32` is higher than (and never equal to) `32`. Thus, `as.mic(">32") == as.mic(32)` now returns `FALSE`, and `as.mic(">32") > as.mic(32)` now returns `TRUE`. * Comparisons of MIC values are now more strict. For example, `>32` is higher than (and never equal to) `32`. Thus, `as.mic(">32") == as.mic(32)` now returns `FALSE`, and `as.mic(">32") > as.mic(32)` now returns `TRUE`.
* Updated `italicise_taxonomy()` to support HTML output * Updated `italicise_taxonomy()` to support HTML output
* `mo_info()` now contains an extra element `group_members`, with the contents of the new `mo_group_members()` function * `mo_info()` now contains an extra element `group_members`, with the contents of the new `mo_group_members()` function

View File

@ -96,7 +96,7 @@ VALID_MIC_LEVELS <- c(t(vapply(FUN.VALUE = character(length(VALID_MIC_LEVELS)),
#' #'
#' Use [droplevels()] to drop unused levels. At default, it will return a plain factor. Use `droplevels(..., as.mic = TRUE)` to maintain the `mic` class. #' Use [droplevels()] to drop unused levels. At default, it will return a plain factor. Use `droplevels(..., as.mic = TRUE)` to maintain the `mic` class.
#' #'
#' With [limit_mic_range()], existing MIC ranges can be limited to a defined range of MIC values. This can be useful to better compare MIC distributions. #' With [rescale_mic()], existing MIC ranges can be limited to a defined range of MIC values. This can be useful to better compare MIC distributions.
#' #'
#' For `ggplot2`, use one of the [`scale_*_mic()`][scale_x_mic()] functions to plot MIC values. They allows custom MIC ranges and to plot intermediate log2 levels for missing MIC values. #' For `ggplot2`, use one of the [`scale_*_mic()`][scale_x_mic()] functions to plot MIC values. They allows custom MIC ranges and to plot intermediate log2 levels for missing MIC values.
#' @return Ordered [factor] with additional class [`mic`], that in mathematical operations acts as a [numeric] vector. Bear in mind that the outcome of any mathematical operation on MICs will return a [numeric] value. #' @return Ordered [factor] with additional class [`mic`], that in mathematical operations acts as a [numeric] vector. Bear in mind that the outcome of any mathematical operation on MICs will return a [numeric] value.
@ -116,8 +116,8 @@ VALID_MIC_LEVELS <- c(t(vapply(FUN.VALUE = character(length(VALID_MIC_LEVELS)),
#' quantile(mic_data) #' quantile(mic_data)
#' all(mic_data < 512) #' all(mic_data < 512)
#' #'
#' # limit MICs using limit_mic_range() #' # limit MICs using rescale_mic()
#' limit_mic_range(mic_data, mic_range = c(4, 16)) #' rescale_mic(mic_data, mic_range = c(4, 16))
#' #'
#' # interpret MIC values #' # interpret MIC values
#' as.sir( #' as.sir(
@ -270,7 +270,7 @@ NA_mic_ <- set_clean_class(factor(NA, levels = VALID_MIC_LEVELS, ordered = TRUE)
#' @rdname as.mic #' @rdname as.mic
#' @param mic_range a manual range to limit the MIC values, e.g., `mic_range = c(0.001, 32)`. Use `NA` to set no limit on one side, e.g., `mic_range = c(NA, 32)`. #' @param mic_range a manual range to limit the MIC values, e.g., `mic_range = c(0.001, 32)`. Use `NA` to set no limit on one side, e.g., `mic_range = c(NA, 32)`.
#' @export #' @export
limit_mic_range <- function(x, mic_range, keep_operators = "edges", as.mic = TRUE) { rescale_mic <- function(x, mic_range, keep_operators = "edges", as.mic = TRUE) {
meet_criteria(mic_range, allow_class = c("numeric", "integer", "logical"), has_length = 2, allow_NA = TRUE, allow_NULL = TRUE) meet_criteria(mic_range, allow_class = c("numeric", "integer", "logical"), has_length = 2, allow_NA = TRUE, allow_NULL = TRUE)
stop_ifnot(all(mic_range %in% c(VALID_MIC_LEVELS, NA)), stop_ifnot(all(mic_range %in% c(VALID_MIC_LEVELS, NA)),
"Values in `mic_range` must be valid MIC values. Unvalid: ", vector_and(mic_range[mic_range %in% c(VALID_MIC_LEVELS, NA)])) "Values in `mic_range` must be valid MIC values. Unvalid: ", vector_and(mic_range[mic_range %in% c(VALID_MIC_LEVELS, NA)]))

View File

@ -117,7 +117,7 @@ scale_x_mic <- function(keep_operators = "edges", mic_range = NULL, drop = FALSE
meet_criteria(drop, allow_class = "logical", has_length = 1) meet_criteria(drop, allow_class = "logical", has_length = 1)
scale <- ggplot2::scale_x_discrete(drop = drop, ...) scale <- ggplot2::scale_x_discrete(drop = drop, ...)
scale$transform <- function(x, keep_ops = keep_operators, mic_rng = mic_range) { scale$transform <- function(x, keep_ops = keep_operators, mic_rng = mic_range) {
limit_mic_range(x = x, keep_operators = keep_ops, mic_range = mic_rng, as.mic = FALSE) rescale_mic(x = x, keep_operators = keep_ops, mic_range = mic_rng, as.mic = FALSE)
} }
scale scale
} }
@ -130,7 +130,7 @@ scale_y_mic <- function(keep_operators = "edges", mic_range = NULL, drop = FALSE
meet_criteria(drop, allow_class = "logical", has_length = 1) meet_criteria(drop, allow_class = "logical", has_length = 1)
scale <- ggplot2::scale_y_discrete(drop = drop, ...) scale <- ggplot2::scale_y_discrete(drop = drop, ...)
scale$transform <- function(x, keep_ops = keep_operators, mic_rng = mic_range) { scale$transform <- function(x, keep_ops = keep_operators, mic_rng = mic_range) {
limit_mic_range(x = x, keep_operators = keep_ops, mic_range = mic_rng, as.mic = FALSE) rescale_mic(x = x, keep_operators = keep_ops, mic_range = mic_rng, as.mic = FALSE)
} }
scale scale
} }
@ -143,7 +143,7 @@ scale_colour_mic <- function(keep_operators = "edges", mic_range = NULL, drop =
meet_criteria(drop, allow_class = "logical", has_length = 1) meet_criteria(drop, allow_class = "logical", has_length = 1)
scale <- ggplot2::scale_colour_discrete(drop = drop, ...) scale <- ggplot2::scale_colour_discrete(drop = drop, ...)
scale$transform <- function(x, keep_ops = keep_operators, mic_rng = mic_range) { scale$transform <- function(x, keep_ops = keep_operators, mic_rng = mic_range) {
limit_mic_range(x = x, keep_operators = keep_ops, mic_range = mic_rng, as.mic = FALSE) rescale_mic(x = x, keep_operators = keep_ops, mic_range = mic_rng, as.mic = FALSE)
} }
scale scale
} }
@ -156,7 +156,7 @@ scale_fill_mic <- function(keep_operators = "edges", mic_range = NULL, drop = FA
meet_criteria(drop, allow_class = "logical", has_length = 1) meet_criteria(drop, allow_class = "logical", has_length = 1)
scale <- ggplot2::scale_fill_discrete(drop = drop, ...) scale <- ggplot2::scale_fill_discrete(drop = drop, ...)
scale$transform <- function(x, keep_ops = keep_operators, mic_rng = mic_range) { scale$transform <- function(x, keep_ops = keep_operators, mic_rng = mic_range) {
limit_mic_range(x = x, keep_operators = keep_ops, mic_range = mic_rng, as.mic = FALSE) rescale_mic(x = x, keep_operators = keep_ops, mic_range = mic_rng, as.mic = FALSE)
} }
scale scale
} }

View File

@ -323,7 +323,7 @@ is_sir_eligible <- function(x, threshold = 0.05) {
#' @rdname as.sir #' @rdname as.sir
#' @export #' @export
#' @param S,I,R,N,SDD a case-indepdendent [regular expression][base::regex] to translate input to this result. This regular expression will be run *after* all non-letters are removed from the input. #' @param S,I,R,N,SDD a case-independent [regular expression][base::regex] to translate input to this result. This regular expression will be run *after* all non-letters are removed from the input.
# extra param: warn (logical, to never throw a warning) # extra param: warn (logical, to never throw a warning)
as.sir.default <- function(x, S = "^(S|U)+$", I = "^(I|H)+$", R = "^(R)+$", N = "^(N|V)+$", SDD = "^(SDD|D)+$", ...) { as.sir.default <- function(x, S = "^(S|U)+$", I = "^(I|H)+$", R = "^(R)+$", N = "^(N|V)+$", SDD = "^(SDD|D)+$", ...) {
if (inherits(x, "sir")) { if (inherits(x, "sir")) {

View File

@ -6,7 +6,7 @@
\alias{mic} \alias{mic}
\alias{is.mic} \alias{is.mic}
\alias{NA_mic_} \alias{NA_mic_}
\alias{limit_mic_range} \alias{rescale_mic}
\alias{droplevels.mic} \alias{droplevels.mic}
\title{Transform Input to Minimum Inhibitory Concentrations (MIC)} \title{Transform Input to Minimum Inhibitory Concentrations (MIC)}
\usage{ \usage{
@ -16,7 +16,7 @@ is.mic(x)
NA_mic_ NA_mic_
limit_mic_range(x, mic_range, keep_operators = "edges", as.mic = TRUE) rescale_mic(x, mic_range, keep_operators = "edges", as.mic = TRUE)
\method{droplevels}{mic}(x, as.mic = FALSE, ...) \method{droplevels}{mic}(x, as.mic = FALSE, ...)
} }
@ -82,7 +82,7 @@ Using \code{\link[=as.double]{as.double()}} or \code{\link[=as.numeric]{as.numer
Use \code{\link[=droplevels]{droplevels()}} to drop unused levels. At default, it will return a plain factor. Use \code{droplevels(..., as.mic = TRUE)} to maintain the \code{mic} class. Use \code{\link[=droplevels]{droplevels()}} to drop unused levels. At default, it will return a plain factor. Use \code{droplevels(..., as.mic = TRUE)} to maintain the \code{mic} class.
With \code{\link[=limit_mic_range]{limit_mic_range()}}, existing MIC ranges can be limited to a defined range of MIC values. This can be useful to better compare MIC distributions. With \code{\link[=rescale_mic]{rescale_mic()}}, existing MIC ranges can be limited to a defined range of MIC values. This can be useful to better compare MIC distributions.
For \code{ggplot2}, use one of the \code{\link[=scale_x_mic]{scale_*_mic()}} functions to plot MIC values. They allows custom MIC ranges and to plot intermediate log2 levels for missing MIC values. For \code{ggplot2}, use one of the \code{\link[=scale_x_mic]{scale_*_mic()}} functions to plot MIC values. They allows custom MIC ranges and to plot intermediate log2 levels for missing MIC values.
@ -101,8 +101,8 @@ fivenum(mic_data)
quantile(mic_data) quantile(mic_data)
all(mic_data < 512) all(mic_data < 512)
# limit MICs using limit_mic_range() # limit MICs using rescale_mic()
limit_mic_range(mic_data, mic_range = c(4, 16)) rescale_mic(mic_data, mic_range = c(4, 16))
# interpret MIC values # interpret MIC values
as.sir( as.sir(

View File

@ -96,7 +96,7 @@ sir_interpretation_history(clean = FALSE)
\item{threshold}{maximum fraction of invalid antimicrobial interpretations of \code{x}, see \emph{Examples}} \item{threshold}{maximum fraction of invalid antimicrobial interpretations of \code{x}, see \emph{Examples}}
\item{S, I, R, N, SDD}{a case-indepdendent \link[base:regex]{regular expression} to translate input to this result. This regular expression will be run \emph{after} all non-letters are removed from the input.} \item{S, I, R, N, SDD}{a case-independent \link[base:regex]{regular expression} to translate input to this result. This regular expression will be run \emph{after} all non-letters are removed from the input.}
\item{mo}{a vector (or column name) with \link{character}s that can be coerced to valid microorganism codes with \code{\link[=as.mo]{as.mo()}}, can be left empty to determine it automatically} \item{mo}{a vector (or column name) with \link{character}s that can be coerced to valid microorganism codes with \code{\link[=as.mo]{as.mo()}}, can be left empty to determine it automatically}