mirror of
https://github.com/msberends/AMR.git
synced 2025-07-08 16:02:02 +02:00
as.rsi warning, site update
This commit is contained in:
@ -30,11 +30,17 @@
|
||||
#' @param year_max highest year to use in the prediction model, defaults to 10 years after today
|
||||
#' @param year_every unit of sequence between lowest year found in the data and \code{year_max}
|
||||
#' @param minimum minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model.
|
||||
#' @param model the statistical model of choice. Valid values are \code{"binomial"} (or \code{"binom"} or \code{"logit"}) or \code{"loglin"} (or \code{"poisson"}) or \code{"linear"} (or \code{"lin"}).
|
||||
#' @param model the statistical model of choice. Defaults to a generalised linear regression model with binomial distribution, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance. See Details for valid options.
|
||||
#' @param I_as_R a logical to indicate whether values \code{I} should be treated as \code{R}
|
||||
#' @param preserve_measurements a logical to indicate whether predictions of years that are actually available in the data should be overwritten by the original data. The standard errors of those years will be \code{NA}.
|
||||
#' @param info a logical to indicate whether textual analysis should be printed with the name and \code{\link{summary}} of the statistical model.
|
||||
#' @param main title of the plot
|
||||
#' @details Valid options for the statistical model are:
|
||||
#' \itemize{
|
||||
#' \item{\code{"binomial"} or \code{"binom"} or \code{"logit"}: a generalised linear regression model with binomial distribution}
|
||||
#' \item{\code{"loglin"} or \code{"poisson"}: a generalised log-linear regression model with poisson distribution}
|
||||
#' \item{\code{"lin"} or \code{"linear"}: a linear regression model}
|
||||
#' }
|
||||
#' @return \code{data.frame} with extra class \code{"resistance_predict"} with columns:
|
||||
#' \itemize{
|
||||
#' \item{\code{year}}
|
||||
@ -306,7 +312,9 @@ plot.resistance_predict <- function(x, main = paste("Resistance prediction of",
|
||||
ylab = paste0("Percentage (", ylab, ")"),
|
||||
xlab = "Year",
|
||||
main = main,
|
||||
sub = paste0("(model: ", attributes(x)$model_title, ")"))
|
||||
sub = paste0("(n = ", sum(x$observations, na.rm = TRUE),
|
||||
", model: ", attributes(x)$model_title, ")"),
|
||||
cex.sub = 0.75)
|
||||
|
||||
axis(side = 2, at = seq(0, 1, 0.1), labels = paste0(0:10 * 10, "%"))
|
||||
|
||||
@ -332,12 +340,13 @@ ggplot_rsi_predict <- function(x, main = paste("Resistance prediction of", attri
|
||||
}
|
||||
suppressWarnings(
|
||||
ggplot2::ggplot(x, ggplot2::aes(x = year, y = value)) +
|
||||
ggplot2::geom_col() +
|
||||
ggplot2::geom_errorbar(ggplot2::aes(ymin = se_min, ymax = se_max)) +
|
||||
scale_y_percent() +
|
||||
ggplot2::geom_point(size = 2) +
|
||||
ggplot2::geom_errorbar(ggplot2::aes(ymin = se_min, ymax = se_max), na.rm = TRUE, width = 0.5) +
|
||||
scale_y_percent(limits = c(0, 1)) +
|
||||
ggplot2::labs(title = main,
|
||||
y = paste0("Percentage (", ylab, ")"),
|
||||
x = "Year",
|
||||
caption = paste0("(model: ", attributes(x)$model_title, ")"))
|
||||
caption = paste0("(n = ", sum(x$observations, na.rm = TRUE),
|
||||
", model: ", attributes(x)$model_title, ")"))
|
||||
)
|
||||
}
|
||||
|
Reference in New Issue
Block a user