@@ -243,21 +243,21 @@ make the structure of your data generally look like this:
-
2023-03-20
+
2023-04-14
abcd
Escherichia coli
S
S
-
2023-03-20
+
2023-04-14
abcd
Escherichia coli
S
R
-
2023-03-20
+
2023-04-14
efgh
Escherichia coli
R
@@ -300,7 +300,7 @@ have extracted from their laboratory systems:
#> 8 M3 A 2015-10-25 E. coli R S S S #> 9 J3 A 2019-06-19 E. coli S S S S #> 10 G6 A 2015-04-27 S. aureus S S S S
-#> # … with 2,990 more rows
+#> # ℹ 2,990 more rows# we will use 'our_data' as the data set name for this tutorialour_data<-example_isolates_unclean
@@ -449,7 +449,7 @@ dplyr:
#> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S #> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S #> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S
-#> # … with 2,990 more rows
+#> # ℹ 2,990 more rows
This is basically it for the cleaning, time to start the data
inclusion.
@@ -532,7 +532,7 @@ like:
#> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE #> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE #> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE
-#> # … with 2,616 more rows
+#> # ℹ 2,616 more rows
Time for the analysis.
@@ -635,7 +635,7 @@ in:
#> 8 2019-06-19 S #> 9 2015-04-27 S #> 10 2011-06-21 S
-#> # … with 2,616 more rows
+#> # ℹ 2,616 more rowsour_data_1st%>%select(bacteria, betalactams())
@@ -654,7 +654,7 @@ in:
#> 8 B_ESCHR_COLI S S #> 9 B_STPHY_AURS S S #> 10 B_ESCHR_COLI S S
-#> # … with 2,616 more rows
+#> # ℹ 2,616 more rowsour_data_1st%>%select(bacteria, where(is.sir))
@@ -671,7 +671,7 @@ in:
#> 8 B_ESCHR_COLI S S S S #> 9 B_STPHY_AURS S S S S #> 10 B_ESCHR_COLI S S S S
-#> # … with 2,616 more rows
+#> # ℹ 2,616 more rows# filtering using AB selectors is also possible:our_data_1st%>%
@@ -690,7 +690,7 @@ in:
#> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE #> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE #> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE
-#> # … with 961 more rows
+#> # ℹ 961 more rowsour_data_1st%>%filter(all(betalactams()=="R"))
@@ -709,7 +709,7 @@ in:
#> 8 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 9 C5 A 2015-08-30 B_KLBSL_PNMN R R S R TRUE #> 10 W9 A 2013-10-02 B_ESCHR_COLI R R S S TRUE
-#> # … with 461 more rows
+#> # ℹ 461 more rows# even works in base R (since R 3.0):our_data_1st[all(betalactams()=="R"), ]
@@ -728,7 +728,7 @@ in:
#> 8 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 9 C5 A 2015-08-30 B_KLBSL_PNMN R R S R TRUE #> 10 W9 A 2013-10-02 B_ESCHR_COLI R R S S TRUE
-#> # … with 461 more rows
+#> # ℹ 461 more rows
diff --git a/articles/AMR_files/figure-html/unnamed-chunk-13-1.png b/articles/AMR_files/figure-html/unnamed-chunk-13-1.png
index 44331332..c53fb2d4 100644
Binary files a/articles/AMR_files/figure-html/unnamed-chunk-13-1.png and b/articles/AMR_files/figure-html/unnamed-chunk-13-1.png differ
diff --git a/articles/EUCAST.html b/articles/EUCAST.html
index 55906050..69a33956 100644
--- a/articles/EUCAST.html
+++ b/articles/EUCAST.html
@@ -38,7 +38,7 @@
AMR (for R)
- 2.0.0.9004
+ 2.0.0.9005
diff --git a/articles/MDR.html b/articles/MDR.html
index 1ccdd7d3..4c94d481 100644
--- a/articles/MDR.html
+++ b/articles/MDR.html
@@ -38,7 +38,7 @@
AMR (for R)
- 2.0.0.9004
+ 2.0.0.9005
@@ -385,19 +385,19 @@ names or codes, this would have worked exactly the same way:
head(my_TB_data)#> rifampicin isoniazid gatifloxacin ethambutol pyrazinamide moxifloxacin
-#> 1 I R I I S R
-#> 2 I R R S S I
-#> 3 I R S R R R
-#> 4 R R I R I R
-#> 5 R R R R R S
-#> 6 S R S S R S
+#> 1 I I I R S S
+#> 2 S R R R R S
+#> 3 I R S I I S
+#> 4 I S S S S R
+#> 5 S I R I R R
+#> 6 S I I I I R#> kanamycin
-#> 1 I
-#> 2 I
+#> 1 S
+#> 2 R#> 3 S
-#> 4 S
+#> 4 I#> 5 R
-#> 6 S
+#> 6 I
We can now add the interpretation of MDR-TB to our data set. You can
use:
@@ -257,7 +257,7 @@ data using a custom made website. The webdesign knowledge needed
R has a huge community.
Many R users just ask questions on websites like StackOverflow.com, the largest
-online community for programmers. At the time of writing, 484 734
+online community for programmers. At the time of writing, 486 808
R-related questions have already been asked on this platform (that
covers questions and answers for any programming language). In my own
experience, most questions are answered within a couple of
diff --git a/articles/WHONET.html b/articles/WHONET.html
index 78b2123f..e80bddaf 100644
--- a/articles/WHONET.html
+++ b/articles/WHONET.html
@@ -38,7 +38,7 @@
AMR (for R)
- 2.0.0.9004
+ 2.0.0.9005
@@ -322,7 +322,7 @@ Longest: 40
A data set with 52 142 rows and 22 columns, containing the following
+
A data set with 52 149 rows and 22 columns, containing the following
column names: mo, fullname, status, kingdom,
phylum, class, order, family,
genus, species, subspecies, rank,
@@ -206,7 +206,7 @@ column names: mo, fullname, status, kingdomgbif_renamed_to, prevalence, and snomed.
This data set is in R available as microorganisms, after
you load the AMR package.
-
It was last updated on 26 February 2023 20:26:58 UTC. Find more info
+
It was last updated on 14 April 2023 09:12:26 UTC. Find more info
about the structure of this data set here.
Direct download links:
@@ -283,7 +283,7 @@ Set Name ‘Microoganism’, OID 2.16.840.1.114222.4.11.1009 (v12). URL:
The function plot is available in base R, and can be
extended by other packages to depend the output based on the type of
input. We extended its function to cope with resistance predictions:
diff --git a/pkgdown.yml b/pkgdown.yml
index e364bda5..f3c6c71b 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -11,7 +11,7 @@ articles:
datasets: datasets.html
resistance_predict: resistance_predict.html
welcome_to_AMR: welcome_to_AMR.html
-last_built: 2023-03-20T21:06Z
+last_built: 2023-04-14T09:18Z
urls:
reference: https://msberends.github.io/AMR/reference
article: https://msberends.github.io/AMR/articles
diff --git a/reference/AMR-deprecated.html b/reference/AMR-deprecated.html
index 30e7c450..9eacf34a 100644
--- a/reference/AMR-deprecated.html
+++ b/reference/AMR-deprecated.html
@@ -10,7 +10,7 @@
AMR (for R)
- 2.0.0.9004
+ 2.0.0.9005
diff --git a/reference/AMR-options.html b/reference/AMR-options.html
index 85e477df..f26be061 100644
--- a/reference/AMR-options.html
+++ b/reference/AMR-options.html
@@ -10,7 +10,7 @@
AMR (for R)
- 2.0.0.9004
+ 2.0.0.9005
diff --git a/reference/AMR.html b/reference/AMR.html
index 0826775c..f1efa81b 100644
--- a/reference/AMR.html
+++ b/reference/AMR.html
@@ -5,14 +5,14 @@ This work was published in the Journal of Statistical Software (Volume 104(3); d
) and formed the basis of two PhD theses (doi:10.33612/diss.177417131
and doi:10.33612/diss.192486375
).
-After installing this package, R knows ~52 000 microorganisms (updated December 2022) and all ~600 antibiotic, antimycotic and antiviral drugs by name and code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC and SNOMED CT), and knows all about valid SIR and MIC values. The integral breakpoint guidelines from CLSI and EUCAST are included from the last 10 years. It supports and can read any data format, including WHONET data. This package works on Windows, macOS and Linux with all versions of R since R-3.0 (April 2013). It was designed to work in any setting, including those with very limited resources. It was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the University of Groningen, in collaboration with non-profit organisations Certe Medical Diagnostics and Advice Foundation and University Medical Center Groningen.
+After installing this package, R knows ~52 000 microorganisms (updated december 2022) and all ~600 antibiotic, antimycotic and antiviral drugs by name and code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC and SNOMED CT), and knows all about valid SIR and MIC values. The integral breakpoint guidelines from CLSI and EUCAST are included from the last 10 years. It supports and can read any data format, including WHONET data. This package works on Windows, macOS and Linux with all versions of R since R-3.0 (April 2013). It was designed to work in any setting, including those with very limited resources. It was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the University of Groningen, in collaboration with non-profit organisations Certe Medical Diagnostics and Advice Foundation and University Medical Center Groningen.
The AMR package is available in English, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish, and Ukrainian. Antimicrobial drug (group) names and colloquial microorganism names are provided in these languages.">The AMR Package — AMR • AMR (for R)Data Set with 5 910 Common Microorganism Codes — microorganisms.codes • AMR (for R)Data Set with 5 751 Common Microorganism Codes — microorganisms.codes • AMR (for R)
@@ -10,7 +10,7 @@
AMR (for R)
- 2.0.0.9004
+ 2.0.0.9005
@@ -137,7 +137,7 @@