1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-09 04:42:22 +02:00

support groups for portion_df, update README

This commit is contained in:
2018-08-12 22:34:03 +02:00
parent e5d32cafe0
commit ce2cdb9309
12 changed files with 215 additions and 100 deletions

View File

@ -279,11 +279,11 @@
#' Dataset with 2000 blood culture isolates of septic patients
#'
#' An anonymised dataset containing 2000 microbial blood culture isolates with their antibiogram of septic patients found in 5 different hospitals in the Netherlands, between 2001 and 2017. This data.frame can be used to practice AMR analysis. For examples, press F1.
#' An anonymised dataset containing 2000 microbial blood culture isolates with their full antibiograms found in septic patients in 4 different hospitals in the Netherlands, between 2001 and 2017. It is true, genuine data. This \code{data.frame} can be used to practice AMR analysis. For examples, press F1.
#' @format A data.frame with 2000 observations and 49 variables:
#' \describe{
#' \item{\code{date}}{date of receipt at the laboratory}
#' \item{\code{hospital_id}}{ID of the hospital}
#' \item{\code{hospital_id}}{ID of the hospital, from A to D}
#' \item{\code{ward_icu}}{logical to determine if ward is an intensive care unit}
#' \item{\code{ward_clinical}}{logical to determine if ward is a regular clinical ward}
#' \item{\code{ward_outpatient}}{logical to determine if ward is an outpatient clinic}

View File

@ -55,7 +55,7 @@
#' @return A vector to add to table, see Examples.
#' @source Methodology of this function is based on: \strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
#' @examples
#' # septic_patients is a dataset available in the AMR package. It is true data.
#' # septic_patients is a dataset available in the AMR package. It is true, genuine data.
#' ?septic_patients
#'
#' library(dplyr)

View File

@ -21,8 +21,9 @@
#' Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}} functions.
#' @param data a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}})
#' @param position position adjustment of bars, either \code{"stack"} (default) or \code{"dodge"}
#' @param x parameter to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"}
#' @param facet parameter to split plots by, either \code{"Interpretation"} (default) or \code{"Antibiotic"}
#' @param x variable to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"}
#' @param fill variable to categorise using the plots legend
#' @param facet variable to split plots by, either \code{"Interpretation"} (default) or \code{"Antibiotic"}
#' @details At default, the names of antibiotics will be shown on the plots using \code{\link{abname}}. This can be set with the option \code{get_antibiotic_names} (a logical value), so change it e.g. to \code{FALSE} with \code{options(get_antibiotic_names = FALSE)}.
#'
#' \strong{The functions}\cr
@ -64,8 +65,18 @@
#' septic_patients %>%
#' select(amox, nitr, fosf, trim, cipr) %>%
#' ggplot_rsi(x = "Interpretation", facet = "Antibiotic")
#'
#' # it also supports groups (don't forget to use facet on the group):
#' septic_patients %>%
#' select(hospital_id, amox, cipr) %>%
#' group_by(hospital_id) %>%
#' ggplot_rsi() +
#' facet_grid("hospital_id") +
#' labs(title = "AMR of Amoxicillin And Ciprofloxacine Per Hospital")
ggplot_rsi <- function(data,
position = "stack",
x = "Antibiotic",
fill = "Interpretation",
facet = NULL) {
if (!"ggplot2" %in% rownames(installed.packages())) {
@ -73,11 +84,15 @@ ggplot_rsi <- function(data,
}
p <- ggplot2::ggplot(data = data) +
geom_rsi(x = x) +
geom_rsi(position = position, x = x, fill = fill) +
scale_y_percent() +
scale_rsi_colours() +
theme_rsi()
if (fill == "Interpretation") {
# set RSI colours
p <- p + scale_rsi_colours()
}
if (!is.null(facet)) {
p <- p + facet_rsi(facet = facet)
}
@ -87,7 +102,7 @@ ggplot_rsi <- function(data,
#' @rdname ggplot_rsi
#' @export
geom_rsi <- function(position = "stack", x = c("Antibiotic", "Interpretation")) {
geom_rsi <- function(position = "stack", x = c("Antibiotic", "Interpretation"), fill = "Interpretation") {
x <- x[1]
if (!x %in% c("Antibiotic", "Interpretation")) {
@ -95,8 +110,8 @@ geom_rsi <- function(position = "stack", x = c("Antibiotic", "Interpretation"))
}
ggplot2::layer(geom = "bar", stat = "identity", position = position,
mapping = ggplot2::aes_string(x = x, y = "Percentage", fill = "Interpretation"),
data = AMR::portion_df, params = list())
mapping = ggplot2::aes_string(x = x, y = "Percentage", fill = fill),
data = AMR::portion_df, params = list())
}

View File

@ -29,7 +29,7 @@
#' @param translate a logical value to indicate whether antibiotic abbreviations should be translated with \code{\link{abname}}
#' @details \strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set.
#'
#' \code{portion_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and calculates the portions R, I and S. The resulting \code{data.frame} will have three rows (for R/I/S) and a column for each variable with class \code{"rsi"}.
#' \code{portion_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and calculates the portions R, I and S. The resulting \emph{tidy data} (see Source) \code{data.frame} will have three rows (S/I/R) and a column for each variable with class \code{"rsi"}.
#'
#' The old \code{\link{rsi}} function is still available for backwards compatibility but is deprecated.
#' \if{html}{
@ -45,6 +45,8 @@
#' \out{<div style="text-align: center">}\figure{combi_therapy_3.png}\out{</div>}
#' }
#' @source \strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
#'
#' Wickham H. \strong{Tidy Data.} The Journal of Statistical Software, vol. 59, 2014. \url{http://vita.had.co.nz/papers/tidy-data.html}
#' @seealso \code{\link{n_rsi}} to count cases with antimicrobial results.
#' @keywords resistance susceptibility rsi_df rsi antibiotics isolate isolates
#' @return Double or, when \code{as_percent = TRUE}, a character.
@ -52,6 +54,9 @@
#' @name portion
#' @export
#' @examples
#' # septic_patients is a data set available in the AMR package. It is true, genuine data.
#' ?septic_patients
#'
#' # Calculate resistance
#' portion_R(septic_patients$amox)
#' portion_IR(septic_patients$amox)
@ -100,6 +105,18 @@
#' combination_p = portion_S(cipr, gent, as_percent = TRUE),
#' combination_n = n_rsi(cipr, gent))
#'
#' # Get portions S/I/R immediately of all rsi columns
#' septic_patients %>%
#' select(amox, cipr) %>%
#' portion_df(translate = FALSE)
#'
#' # It also supports grouping variables
#' septic_patients %>%
#' select(hospital_id, amox, cipr) %>%
#' group_by(hospital_id) %>%
#' portion_df(translate = FALSE)
#'
#'
#' \dontrun{
#'
#' # calculate current empiric combination therapy of Helicobacter gastritis:
@ -177,25 +194,33 @@ portion_S <- function(ab1,
}
#' @rdname portion
#' @importFrom dplyr bind_cols summarise_if mutate
#' @importFrom dplyr bind_rows summarise_if mutate group_vars select everything
#' @export
portion_df <- function(data, translate = getOption("get_antibiotic_names", TRUE)) {
resS <- bind_cols(data.frame(Interpretation = "S", stringsAsFactors = FALSE),
summarise_if(.tbl = data,
.predicate = is.rsi,
.funs = portion_S))
resI <- bind_cols(data.frame(Interpretation = "I", stringsAsFactors = FALSE),
summarise_if(.tbl = data,
.predicate = is.rsi,
.funs = portion_I))
resR <- bind_cols(data.frame(Interpretation = "R", stringsAsFactors = FALSE),
summarise_if(.tbl = data,
.predicate = is.rsi,
.funs = portion_R))
resS <- summarise_if(.tbl = data,
.predicate = is.rsi,
.funs = portion_S) %>%
mutate(Interpretation = "S") %>%
select(Interpretation, everything())
resI <- summarise_if(.tbl = data,
.predicate = is.rsi,
.funs = portion_I) %>%
mutate(Interpretation = "I") %>%
select(Interpretation, everything())
resR <- summarise_if(.tbl = data,
.predicate = is.rsi,
.funs = portion_R) %>%
mutate(Interpretation = "R") %>%
select(Interpretation, everything())
data.groups <- group_vars(data)
res <- bind_rows(resS, resI, resR) %>%
mutate(Interpretation = factor(Interpretation, levels = c("R", "I", "S"), ordered = TRUE)) %>%
tidyr::gather(Antibiotic, Percentage, -Interpretation)
tidyr::gather(Antibiotic, Percentage, -Interpretation, -data.groups)
if (translate == TRUE) {
res <- res %>% mutate(Antibiotic = abname(Antibiotic, from = "guess", to = "official"))
}