mirror of
https://github.com/msberends/AMR.git
synced 2025-07-09 17:41:59 +02:00
support groups for portion_df, update README
This commit is contained in:
BIN
man/figures/rsi_example4.png
Normal file
BIN
man/figures/rsi_example4.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
@ -76,7 +76,7 @@ Determine first (weighted) isolates of all microorganisms of every patient per e
|
||||
}
|
||||
|
||||
\examples{
|
||||
# septic_patients is a dataset available in the AMR package. It is true data.
|
||||
# septic_patients is a dataset available in the AMR package. It is true, genuine data.
|
||||
?septic_patients
|
||||
|
||||
library(dplyr)
|
||||
|
@ -9,9 +9,11 @@
|
||||
\alias{theme_rsi}
|
||||
\title{AMR bar plots with \code{ggplot}}
|
||||
\usage{
|
||||
ggplot_rsi(data, x = "Antibiotic", facet = NULL)
|
||||
ggplot_rsi(data, position = "stack", x = "Antibiotic",
|
||||
fill = "Interpretation", facet = NULL)
|
||||
|
||||
geom_rsi(position = "stack", x = c("Antibiotic", "Interpretation"))
|
||||
geom_rsi(position = "stack", x = c("Antibiotic", "Interpretation"),
|
||||
fill = "Interpretation")
|
||||
|
||||
facet_rsi(facet = c("Interpretation", "Antibiotic"))
|
||||
|
||||
@ -24,11 +26,13 @@ theme_rsi()
|
||||
\arguments{
|
||||
\item{data}{a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}})}
|
||||
|
||||
\item{x}{parameter to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"}}
|
||||
|
||||
\item{facet}{parameter to split plots by, either \code{"Interpretation"} (default) or \code{"Antibiotic"}}
|
||||
|
||||
\item{position}{position adjustment of bars, either \code{"stack"} (default) or \code{"dodge"}}
|
||||
|
||||
\item{x}{variable to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"}}
|
||||
|
||||
\item{fill}{variable to categorise using the plots legend}
|
||||
|
||||
\item{facet}{variable to split plots by, either \code{"Interpretation"} (default) or \code{"Antibiotic"}}
|
||||
}
|
||||
\description{
|
||||
Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}} functions.
|
||||
@ -74,4 +78,12 @@ septic_patients \%>\%
|
||||
septic_patients \%>\%
|
||||
select(amox, nitr, fosf, trim, cipr) \%>\%
|
||||
ggplot_rsi(x = "Interpretation", facet = "Antibiotic")
|
||||
|
||||
# it also supports groups (don't forget to use facet on the group):
|
||||
septic_patients \%>\%
|
||||
select(hospital_id, amox, cipr) \%>\%
|
||||
group_by(hospital_id) \%>\%
|
||||
ggplot_rsi() +
|
||||
facet_grid("hospital_id") +
|
||||
labs(title = "AMR of Amoxicillin And Ciprofloxacine Per Hospital")
|
||||
}
|
||||
|
@ -11,6 +11,8 @@
|
||||
\title{Calculate resistance of isolates}
|
||||
\source{
|
||||
\strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
|
||||
|
||||
Wickham H. \strong{Tidy Data.} The Journal of Statistical Software, vol. 59, 2014. \url{http://vita.had.co.nz/papers/tidy-data.html}
|
||||
}
|
||||
\usage{
|
||||
portion_R(ab1, ab2 = NULL, minimum = 30, as_percent = FALSE)
|
||||
@ -49,7 +51,7 @@ These functions can be used to calculate the (co-)resistance of microbial isolat
|
||||
\details{
|
||||
\strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set.
|
||||
|
||||
\code{portion_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and calculates the portions R, I and S. The resulting \code{data.frame} will have three rows (for R/I/S) and a column for each variable with class \code{"rsi"}.
|
||||
\code{portion_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and calculates the portions R, I and S. The resulting \emph{tidy data} (see Source) \code{data.frame} will have three rows (S/I/R) and a column for each variable with class \code{"rsi"}.
|
||||
|
||||
The old \code{\link{rsi}} function is still available for backwards compatibility but is deprecated.
|
||||
\if{html}{
|
||||
@ -66,6 +68,9 @@ The old \code{\link{rsi}} function is still available for backwards compatibilit
|
||||
}
|
||||
}
|
||||
\examples{
|
||||
# septic_patients is a data set available in the AMR package. It is true, genuine data.
|
||||
?septic_patients
|
||||
|
||||
# Calculate resistance
|
||||
portion_R(septic_patients$amox)
|
||||
portion_IR(septic_patients$amox)
|
||||
@ -114,6 +119,18 @@ septic_patients \%>\%
|
||||
combination_p = portion_S(cipr, gent, as_percent = TRUE),
|
||||
combination_n = n_rsi(cipr, gent))
|
||||
|
||||
# Get portions S/I/R immediately of all rsi columns
|
||||
septic_patients \%>\%
|
||||
select(amox, cipr) \%>\%
|
||||
portion_df(translate = FALSE)
|
||||
|
||||
# It also supports grouping variables
|
||||
septic_patients \%>\%
|
||||
select(hospital_id, amox, cipr) \%>\%
|
||||
group_by(hospital_id) \%>\%
|
||||
portion_df(translate = FALSE)
|
||||
|
||||
|
||||
\dontrun{
|
||||
|
||||
# calculate current empiric combination therapy of Helicobacter gastritis:
|
||||
|
@ -7,7 +7,7 @@
|
||||
\format{A data.frame with 2000 observations and 49 variables:
|
||||
\describe{
|
||||
\item{\code{date}}{date of receipt at the laboratory}
|
||||
\item{\code{hospital_id}}{ID of the hospital}
|
||||
\item{\code{hospital_id}}{ID of the hospital, from A to D}
|
||||
\item{\code{ward_icu}}{logical to determine if ward is an intensive care unit}
|
||||
\item{\code{ward_clinical}}{logical to determine if ward is a regular clinical ward}
|
||||
\item{\code{ward_outpatient}}{logical to determine if ward is an outpatient clinic}
|
||||
@ -21,7 +21,7 @@
|
||||
septic_patients
|
||||
}
|
||||
\description{
|
||||
An anonymised dataset containing 2000 microbial blood culture isolates with their antibiogram of septic patients found in 5 different hospitals in the Netherlands, between 2001 and 2017. This data.frame can be used to practice AMR analysis. For examples, press F1.
|
||||
An anonymised dataset containing 2000 microbial blood culture isolates with their full antibiograms found in septic patients in 4 different hospitals in the Netherlands, between 2001 and 2017. It is true, genuine data. This \code{data.frame} can be used to practice AMR analysis. For examples, press F1.
|
||||
}
|
||||
\examples{
|
||||
# ----------- #
|
||||
|
Reference in New Issue
Block a user