1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 09:11:51 +02:00

(v1.3.0.9023) optimalisation

This commit is contained in:
2020-09-19 11:54:01 +02:00
parent 4e40e42011
commit d049cce69b
30 changed files with 104 additions and 578 deletions

View File

@ -136,10 +136,10 @@ With ambiguous user input, the returned results are chosen based on their matchi
\item The \href{https://en.wikipedia.org/wiki/Levenshtein_distance}{Levenshtein distance} \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
}
\deqn{L' = F - \frac{0.5 \times L}{F}}{L' = F - (0.5 * L) / F}
\deqn{L' = F - \frac{0.5L}{F}}{L' = (F - 0.5L) / F}
The final matching score \eqn{M} is calculated as:
\deqn{M = L' \times \frac{1}{P \times K} * \frac{1}{U}}{M = L' * (1 / (P * K)) * (1 / U)}
\deqn{M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}}{M = L' * (1 / (P * K * U)) = (F - 0.5L) / (F * P * K * U)}
All matches are sorted descending on their matching score and for all user input values, the top match will be returned.
}

View File

@ -25,10 +25,10 @@ The matching score is based on four parameters:
\item The \href{https://en.wikipedia.org/wiki/Levenshtein_distance}{Levenshtein distance} \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
}
\deqn{L' = F - \frac{0.5 \times L}{F}}{L' = F - (0.5 * L) / F}
\deqn{L' = F - \frac{0.5L}{F}}{L' = (F - 0.5L) / F}
The final matching score \eqn{M} is calculated as:
\deqn{M = L' \times \frac{1}{P \times K} * \frac{1}{U}}{M = L' * (1 / (P * K)) * (1 / U)}
\deqn{M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}}{M = L' * (1 / (P * K * U)) = (F - 0.5L) / (F * P * K * U)}
}
\examples{
as.mo("E. coli")