1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-26 08:06:12 +01:00

(v2.1.1.9118) move ggplot2 plotting functions to general 'plotting' man page

This commit is contained in:
dr. M.S. (Matthijs) Berends 2024-12-14 19:41:15 +01:00
parent bfef094bbc
commit d7de1bc33d
No known key found for this signature in database
18 changed files with 332 additions and 291 deletions

View File

@ -46,6 +46,7 @@ jobs:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
with: with:
# this is to keep timestamps, the default fetch-depth: 1 gets the timestamps of the moment of cloning # this is to keep timestamps, the default fetch-depth: 1 gets the timestamps of the moment of cloning
# we need this for the download page on our website - dates must be of the files, not of the latest git push
fetch-depth: 0 fetch-depth: 0
- name: Preserve timestamps - name: Preserve timestamps
@ -69,7 +70,6 @@ jobs:
extra-packages: | extra-packages: |
any::pkgdown any::pkgdown
any::tidymodels any::tidymodels
any::data.table
# Send updates to repo using GH Actions bot # Send updates to repo using GH Actions bot
- name: Create website in separate branch - name: Create website in separate branch

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 2.1.1.9117 Version: 2.1.1.9118
Date: 2024-12-13 Date: 2024-12-14
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,4 +1,4 @@
# AMR 2.1.1.9117 # AMR 2.1.1.9118
*(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)* *(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)*

View File

@ -1,9 +1,9 @@
Metadata-Version: 2.1 Metadata-Version: 2.1
Name: AMR Name: AMR
Version: 2.1.1.9117 Version: 2.1.1.9118
Summary: A Python wrapper for the AMR R package Summary: A Python wrapper for the AMR R package
Home-page: https://github.com/msberends/AMR Home-page: https://github.com/msberends/AMR
Author: Dr. Matthijs Berends Author: Matthijs Berends
Author-email: m.s.berends@umcg.nl Author-email: m.s.berends@umcg.nl
License: GPL 2 License: GPL 2
Project-URL: Bug Tracker, https://github.com/msberends/AMR/issues Project-URL: Bug Tracker, https://github.com/msberends/AMR/issues

View File

@ -117,8 +117,6 @@ from .functions import is_new_episode
from .functions import ggplot_pca from .functions import ggplot_pca
from .functions import ggplot_sir from .functions import ggplot_sir
from .functions import geom_sir from .functions import geom_sir
from .functions import theme_sir
from .functions import labels_sir_count
from .functions import guess_ab_col from .functions import guess_ab_col
from .functions import italicise_taxonomy from .functions import italicise_taxonomy
from .functions import italicize_taxonomy from .functions import italicize_taxonomy
@ -181,6 +179,8 @@ from .functions import mo_info
from .functions import mo_url from .functions import mo_url
from .functions import mo_property from .functions import mo_property
from .functions import pca from .functions import pca
from .functions import theme_sir
from .functions import labels_sir_count
from .functions import resistance from .functions import resistance
from .functions import susceptibility from .functions import susceptibility
from .functions import sir_confidence_interval from .functions import sir_confidence_interval

View File

@ -381,12 +381,6 @@ def ggplot_sir(*args, **kwargs):
def geom_sir(*args, **kwargs): def geom_sir(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.geom_sir(*args, **kwargs)) return convert_to_python(amr_r.geom_sir(*args, **kwargs))
def theme_sir(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.theme_sir(*args, **kwargs))
def labels_sir_count(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.labels_sir_count(*args, **kwargs))
def guess_ab_col(*args, **kwargs): def guess_ab_col(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.guess_ab_col(*args, **kwargs)) return convert_to_python(amr_r.guess_ab_col(*args, **kwargs))
@ -573,6 +567,12 @@ def mo_property(*args, **kwargs):
def pca(*args, **kwargs): def pca(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.pca(*args, **kwargs)) return convert_to_python(amr_r.pca(*args, **kwargs))
def theme_sir(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.theme_sir(*args, **kwargs))
def labels_sir_count(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.labels_sir_count(*args, **kwargs))
def resistance(*args, **kwargs): def resistance(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.resistance(*args, **kwargs)) return convert_to_python(amr_r.resistance(*args, **kwargs))

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -2,14 +2,14 @@ from setuptools import setup, find_packages
setup( setup(
name='AMR', name='AMR',
version='2.1.1.9117', version='2.1.1.9118',
packages=find_packages(), packages=find_packages(),
install_requires=[ install_requires=[
'rpy2', 'rpy2',
'numpy', 'numpy',
'pandas', 'pandas',
], ],
author='Dr. Matthijs Berends', author='Matthijs Berends',
author_email='m.s.berends@umcg.nl', author_email='m.s.berends@umcg.nl',
description='A Python wrapper for the AMR R package', description='A Python wrapper for the AMR R package',
long_description=open('README.md').read(), long_description=open('README.md').read(),

View File

@ -52,18 +52,15 @@
#' @param ... other arguments passed on to [geom_sir()] or, in case of [scale_sir_colours()], named values to set colours. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. See *Examples*. #' @param ... other arguments passed on to [geom_sir()] or, in case of [scale_sir_colours()], named values to set colours. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. See *Examples*.
#' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` argument. See [count_df()]. #' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` argument. See [count_df()].
#' #'
#' ### The Functions
#' [geom_sir()] will take any variable from the data that has an [`sir`] class (created with [as.sir()]) using [sir_df()] and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. #' [geom_sir()] will take any variable from the data that has an [`sir`] class (created with [as.sir()]) using [sir_df()] and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
#' #'
#' [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()]. #' Additional functions include:
#' #'
#' [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()]. #' * [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()].
#' #' * [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()].
#' [scale_sir_colours()] sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. #' * [scale_sir_colours()] sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
#' #' * [theme_sir()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction.
#' [theme_sir()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction. #' * [labels_sir_count()] print datalabels on the bars with percentage and amount of isolates using [ggplot2::geom_text()].
#'
#' [labels_sir_count()] print datalabels on the bars with percentage and amount of isolates using [ggplot2::geom_text()].
#' #'
#' [ggplot_sir()] is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (`%>%`). See *Examples*. #' [ggplot_sir()] is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (`%>%`). See *Examples*.
#' @rdname ggplot_sir #' @rdname ggplot_sir
@ -344,187 +341,3 @@ geom_sir <- function(position = NULL,
... ...
) )
} }
#' @rdname ggplot_sir
#' @export
facet_sir <- function(facet = c("interpretation", "antibiotic"), nrow = NULL) {
facet <- facet[1]
stop_ifnot_installed("ggplot2")
meet_criteria(facet, allow_class = "character", has_length = 1)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
# we work with aes_string later on
facet_deparse <- deparse(substitute(facet))
if (facet_deparse != "facet") {
facet <- facet_deparse
}
if (facet %like% '".*"') {
facet <- substr(facet, 2, nchar(facet) - 1)
}
if (tolower(facet) %in% tolower(c("SIR", "sir", "interpretations", "result"))) {
facet <- "interpretation"
} else if (tolower(facet) %in% tolower(c("ab", "abx", "antibiotics"))) {
facet <- "antibiotic"
}
ggplot2::facet_wrap(facets = facet, scales = "free_x", nrow = nrow)
}
#' @rdname ggplot_sir
#' @export
scale_y_percent <- function(breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1), limits = NULL) {
stop_ifnot_installed("ggplot2")
meet_criteria(breaks, allow_class = c("numeric", "integer", "function"))
meet_criteria(limits, allow_class = c("numeric", "integer"), has_length = 2, allow_NULL = TRUE, allow_NA = TRUE)
if (!is.function(breaks) && all(breaks[breaks != 0] > 1)) {
breaks <- breaks / 100
}
ggplot2::scale_y_continuous(
breaks = breaks,
labels = if (is.function(breaks)) function(x) percentage(breaks(x)) else percentage(breaks),
limits = limits
)
}
#' @rdname ggplot_sir
#' @export
scale_sir_colours <- function(...,
aesthetics = "fill") {
stop_ifnot_installed("ggplot2")
meet_criteria(aesthetics, allow_class = "character", is_in = c("alpha", "colour", "color", "fill", "linetype", "shape", "size"))
# behaviour until AMR pkg v1.5.0 and also when coming from ggplot_sir()
if ("colours" %in% names(list(...))) {
original_cols <- c(
S = "#3CAEA3",
SI = "#3CAEA3",
I = "#F6D55C",
IR = "#ED553B",
R = "#ED553B"
)
colours <- replace(original_cols, names(list(...)$colours), list(...)$colours)
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
return(ggplot2::scale_fill_manual(values = colours, limits = force))
}
if (identical(unlist(list(...)), FALSE)) {
return(invisible())
}
names_susceptible <- c(
"S", "SI", "IS", "S+I", "I+S", "susceptible", "Susceptible",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible"),
"replacement",
drop = TRUE
])
)
names_incr_exposure <- c(
"I", "intermediate", "increased exposure", "incr. exposure",
"Increased exposure", "Incr. exposure", "Susceptible, incr. exp.",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Intermediate"),
"replacement",
drop = TRUE
]),
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible, incr. exp."),
"replacement",
drop = TRUE
])
)
names_resistant <- c(
"R", "IR", "RI", "R+I", "I+R", "resistant", "Resistant",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Resistant"),
"replacement",
drop = TRUE
])
)
susceptible <- rep("#3CAEA3", length(names_susceptible))
names(susceptible) <- names_susceptible
incr_exposure <- rep("#F6D55C", length(names_incr_exposure))
names(incr_exposure) <- names_incr_exposure
resistant <- rep("#ED553B", length(names_resistant))
names(resistant) <- names_resistant
original_cols <- c(susceptible, incr_exposure, resistant)
dots <- c(...)
# replace S, I, R as colours: scale_sir_colours(mydatavalue = "S")
dots[dots == "S"] <- "#3CAEA3"
dots[dots == "I"] <- "#F6D55C"
dots[dots == "R"] <- "#ED553B"
cols <- replace(original_cols, names(dots), dots)
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
ggplot2::scale_discrete_manual(aesthetics = aesthetics, values = cols, limits = force)
}
#' @rdname ggplot_sir
#' @export
theme_sir <- function() {
stop_ifnot_installed("ggplot2")
ggplot2::theme_minimal(base_size = 10) +
ggplot2::theme(
panel.grid.major.x = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major.y = ggplot2::element_line(colour = "grey75"),
# center title and subtitle
plot.title = ggplot2::element_text(hjust = 0.5),
plot.subtitle = ggplot2::element_text(hjust = 0.5)
)
}
#' @rdname ggplot_sir
#' @export
labels_sir_count <- function(position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15") {
stop_ifnot_installed("ggplot2")
meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE)
meet_criteria(x, allow_class = "character", has_length = 1)
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
language <- validate_language(language)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(datalabels.colour, allow_class = "character", has_length = 1)
if (is.null(position)) {
position <- "fill"
}
if (identical(position, "fill")) {
position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE)
}
x_name <- x
ggplot2::geom_text(
mapping = ggplot2::aes_string(
label = "lbl",
x = x,
y = "value"
),
position = position,
inherit.aes = FALSE,
size = datalabels.size,
colour = datalabels.colour,
lineheight = 0.75,
data = function(x) {
transformed <- sir_df(
data = x,
translate_ab = translate_ab,
combine_SI = combine_SI,
minimum = minimum,
language = language
)
transformed$gr <- transformed[, x_name, drop = TRUE]
transformed %pm>%
pm_group_by(gr) %pm>%
pm_mutate(lbl = paste0("n=", isolates)) %pm>%
pm_ungroup() %pm>%
pm_select(-gr)
}
)
}

View File

@ -27,7 +27,7 @@
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
# ==================================================================== # # ==================================================================== #
#' Plotting for Classes `sir`, `mic` and `disk` #' Plotting Helpers for AMR Data Analysis
#' #'
#' @description #' @description
#' Functions to plot classes `sir`, `mic` and `disk`, with support for base \R and `ggplot2`. #' Functions to plot classes `sir`, `mic` and `disk`, with support for base \R and `ggplot2`.
@ -49,6 +49,16 @@
#' For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the `guideline` argument are: `r vector_and(AMR::clinical_breakpoints$guideline, quotes = TRUE, reverse = TRUE)`. #' For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the `guideline` argument are: `r vector_and(AMR::clinical_breakpoints$guideline, quotes = TRUE, reverse = TRUE)`.
#' #'
#' Simply using `"CLSI"` or `"EUCAST"` as input will automatically select the latest version of that guideline. #' Simply using `"CLSI"` or `"EUCAST"` as input will automatically select the latest version of that guideline.
#'
#' ### Additional `ggplot2` Functions
#'
#' This package contains several functions that extend the `ggplot2` package, to help in visualising AMR data results. All these functions are internally used by [ggplot_sir()] too.
#'
#' * [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()].
#' * [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()].
#' * [scale_sir_colours()] sets colours to the bars (green for S, yellow for I, and red for R). Has multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
#' * [theme_sir()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction.
#' * [labels_sir_count()] print datalabels on the bars with percentage and number of isolates, using [ggplot2::geom_text()].
#' @name plot #' @name plot
#' @rdname plot #' @rdname plot
#' @return The `autoplot()` functions return a [`ggplot`][ggplot2::ggplot()] model that is extendible with any `ggplot2` function. #' @return The `autoplot()` functions return a [`ggplot`][ggplot2::ggplot()] model that is extendible with any `ggplot2` function.
@ -915,3 +925,192 @@ plot_colours_subtitle_guideline <- function(x, mo, ab, guideline, colours_SIR, f
list(cols = cols, count = as.double(x), sub = sub, guideline = guideline) list(cols = cols, count = as.double(x), sub = sub, guideline = guideline)
} }
#' @rdname plot
#' @export
facet_sir <- function(facet = c("interpretation", "antibiotic"), nrow = NULL) {
facet <- facet[1]
stop_ifnot_installed("ggplot2")
meet_criteria(facet, allow_class = "character", has_length = 1)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
# we work with aes_string later on
facet_deparse <- deparse(substitute(facet))
if (facet_deparse != "facet") {
facet <- facet_deparse
}
if (facet %like% '".*"') {
facet <- substr(facet, 2, nchar(facet) - 1)
}
if (tolower(facet) %in% tolower(c("SIR", "sir", "interpretations", "result"))) {
facet <- "interpretation"
} else if (tolower(facet) %in% tolower(c("ab", "abx", "antibiotics"))) {
facet <- "antibiotic"
}
ggplot2::facet_wrap(facets = facet, scales = "free_x", nrow = nrow)
}
#' @rdname plot
#' @export
scale_y_percent <- function(breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1), limits = NULL) {
stop_ifnot_installed("ggplot2")
meet_criteria(breaks, allow_class = c("numeric", "integer", "function"))
meet_criteria(limits, allow_class = c("numeric", "integer"), has_length = 2, allow_NULL = TRUE, allow_NA = TRUE)
if (!is.function(breaks) && all(breaks[breaks != 0] > 1)) {
breaks <- breaks / 100
}
ggplot2::scale_y_continuous(
breaks = breaks,
labels = if (is.function(breaks)) function(x) percentage(breaks(x)) else percentage(breaks),
limits = limits
)
}
#' @rdname plot
#' @export
scale_sir_colours <- function(...,
aesthetics = "fill",
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B")) {
stop_ifnot_installed("ggplot2")
meet_criteria(aesthetics, allow_class = "character", is_in = c("alpha", "colour", "color", "fill", "linetype", "shape", "size"))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 3)
}
# behaviour until AMR pkg v1.5.0 and also when coming from ggplot_sir()
if ("colours" %in% names(list(...))) {
original_cols <- c(
S = colours_SIR[1],
SI = colours_SIR[1],
I = colours_SIR[2],
IR = colours_SIR[3],
R = colours_SIR[3]
)
colours <- replace(original_cols, names(list(...)$colours), list(...)$colours)
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
return(ggplot2::scale_fill_manual(values = colours, limits = force))
}
if (identical(unlist(list(...)), FALSE)) {
return(invisible())
}
names_susceptible <- c(
"S", "SI", "IS", "S+I", "I+S", "susceptible", "Susceptible",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible"),
"replacement",
drop = TRUE
])
)
names_incr_exposure <- c(
"I", "intermediate", "increased exposure", "incr. exposure",
"Increased exposure", "Incr. exposure", "Susceptible, incr. exp.",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Intermediate"),
"replacement",
drop = TRUE
]),
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible, incr. exp."),
"replacement",
drop = TRUE
])
)
names_resistant <- c(
"R", "IR", "RI", "R+I", "I+R", "resistant", "Resistant",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Resistant"),
"replacement",
drop = TRUE
])
)
susceptible <- rep(colours_SIR[1], length(names_susceptible))
names(susceptible) <- names_susceptible
incr_exposure <- rep(colours_SIR[2], length(names_incr_exposure))
names(incr_exposure) <- names_incr_exposure
resistant <- rep(colours_SIR[3], length(names_resistant))
names(resistant) <- names_resistant
original_cols <- c(susceptible, incr_exposure, resistant)
dots <- c(...)
# replace S, I, R as colours: scale_sir_colours(mydatavalue = "S")
dots[dots == "S"] <- colours_SIR[1]
dots[dots == "I"] <- colours_SIR[2]
dots[dots == "R"] <- colours_SIR[3]
cols <- replace(original_cols, names(dots), dots)
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
ggplot2::scale_discrete_manual(aesthetics = aesthetics, values = cols, limits = force)
}
#' @rdname plot
#' @export
theme_sir <- function() {
stop_ifnot_installed("ggplot2")
ggplot2::theme_minimal(base_size = 10) +
ggplot2::theme(
panel.grid.major.x = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major.y = ggplot2::element_line(colour = "grey75"),
# center title and subtitle
plot.title = ggplot2::element_text(hjust = 0.5),
plot.subtitle = ggplot2::element_text(hjust = 0.5)
)
}
#' @rdname plot
#' @export
labels_sir_count <- function(position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15") {
stop_ifnot_installed("ggplot2")
meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE)
meet_criteria(x, allow_class = "character", has_length = 1)
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
language <- validate_language(language)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(datalabels.colour, allow_class = "character", has_length = 1)
if (is.null(position)) {
position <- "fill"
}
if (identical(position, "fill")) {
position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE)
}
x_name <- x
ggplot2::geom_text(
mapping = ggplot2::aes_string(
label = "lbl",
x = x,
y = "value"
),
position = position,
inherit.aes = FALSE,
size = datalabels.size,
colour = datalabels.colour,
lineheight = 0.75,
data = function(x) {
transformed <- sir_df(
data = x,
translate_ab = translate_ab,
combine_SI = combine_SI,
minimum = minimum,
language = language
)
transformed$gr <- transformed[, x_name, drop = TRUE]
transformed %pm>%
pm_group_by(gr) %pm>%
pm_mutate(lbl = paste0("n=", isolates)) %pm>%
pm_ungroup() %pm>%
pm_select(-gr)
}
)
}

View File

@ -274,7 +274,7 @@ setup(
'numpy', 'numpy',
'pandas', 'pandas',
], ],
author='Dr. Matthijs Berends', author='Matthijs Berends',
author_email='m.s.berends@umcg.nl', author_email='m.s.berends@umcg.nl',
description='A Python wrapper for the AMR R package', description='A Python wrapper for the AMR R package',
long_description=open('README.md').read(), long_description=open('README.md').read(),

View File

@ -1,5 +1,5 @@
This files contains all context you must know about the AMR package for R. This files contains all context you must know about the AMR package for R.
First and foremost, you are trained on version 2.1.1.9117. Remember this whenever someone asks which AMR package version youre at. First and foremost, you are trained on version 2.1.1.9118. Remember this whenever someone asks which AMR package version youre at.
-------------------------------- --------------------------------
THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'NAMESPACE': THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'NAMESPACE':
@ -5365,11 +5365,6 @@ THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/ggplot_sir.Rd':
\name{ggplot_sir} \name{ggplot_sir}
\alias{ggplot_sir} \alias{ggplot_sir}
\alias{geom_sir} \alias{geom_sir}
\alias{facet_sir}
\alias{scale_y_percent}
\alias{scale_sir_colours}
\alias{theme_sir}
\alias{labels_sir_count}
\title{AMR Plots with \code{ggplot2}} \title{AMR Plots with \code{ggplot2}}
\usage{ \usage{
ggplot_sir( ggplot_sir(
@ -5408,28 +5403,6 @@ geom_sir(
combine_SI = TRUE, combine_SI = TRUE,
... ...
) )
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(..., aesthetics = "fill")
theme_sir()
labels_sir_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15"
)
} }
\arguments{ \arguments{
\item{data}{a \link{data.frame} with column(s) of class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})} \item{data}{a \link{data.frame} with column(s) of class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})}
@ -5483,23 +5456,20 @@ Use these functions to create bar plots for AMR data analysis. All functions rel
} }
\details{ \details{
At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}. At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}.
\subsection{The Functions}{
\code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_df]{sir_df()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. \code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_df]{sir_df()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
\code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}. Additional functions include:
\itemize{
\code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}. \item \code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
\item \code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}.
\code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. \item \code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
\item \code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction.
\code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction. \item \code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
}
\code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
\code{\link[=ggplot_sir]{ggplot_sir()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}. \code{\link[=ggplot_sir]{ggplot_sir()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}.
} }
}
\examples{ \examples{
\donttest{ \donttest{
if (require("ggplot2") && require("dplyr")) { if (require("ggplot2") && require("dplyr")) {
@ -7437,7 +7407,12 @@ THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/plot.Rd':
\alias{plot.sir} \alias{plot.sir}
\alias{autoplot.sir} \alias{autoplot.sir}
\alias{fortify.sir} \alias{fortify.sir}
\title{Plotting for Classes \code{sir}, \code{mic} and \code{disk}} \alias{facet_sir}
\alias{scale_y_percent}
\alias{scale_sir_colours}
\alias{theme_sir}
\alias{labels_sir_count}
\title{Plotting Helpers for AMR Data Analysis}
\usage{ \usage{
scale_x_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...) scale_x_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...)
@ -7535,6 +7510,32 @@ scale_fill_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...)
) )
\method{fortify}{sir}(object, ...) \method{fortify}{sir}(object, ...)
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(
...,
aesthetics = "fill",
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B")
)
theme_sir()
labels_sir_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15"
)
} }
\arguments{ \arguments{
\item{keep_operators}{a \link{character} specifying how to handle operators (such as \code{>} and \code{<=}) in the input. Accepts one of three values: \code{"all"} (or \code{TRUE}) to keep all operators, \code{"none"} (or \code{FALSE}) to remove all operators, or \code{"edges"} to keep operators only at both ends of the range.} \item{keep_operators}{a \link{character} specifying how to handle operators (such as \code{>} and \code{<=}) in the input. Accepts one of three values: \code{"all"} (or \code{TRUE}) to keep all operators, \code{"none"} (or \code{FALSE}) to remove all operators, or \code{"edges"} to keep operators only at both ends of the range.}
@ -7583,6 +7584,17 @@ The interpretation of "I" will be named "Increased exposure" for all EUCAST guid
For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} argument are: "EUCAST 2024", "EUCAST 2023", "EUCAST 2022", "EUCAST 2021", "EUCAST 2020", "EUCAST 2019", "EUCAST 2018", "EUCAST 2017", "EUCAST 2016", "EUCAST 2015", "EUCAST 2014", "EUCAST 2013", "EUCAST 2012", "EUCAST 2011", "CLSI 2024", "CLSI 2023", "CLSI 2022", "CLSI 2021", "CLSI 2020", "CLSI 2019", "CLSI 2018", "CLSI 2017", "CLSI 2016", "CLSI 2015", "CLSI 2014", "CLSI 2013", "CLSI 2012", and "CLSI 2011". For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} argument are: "EUCAST 2024", "EUCAST 2023", "EUCAST 2022", "EUCAST 2021", "EUCAST 2020", "EUCAST 2019", "EUCAST 2018", "EUCAST 2017", "EUCAST 2016", "EUCAST 2015", "EUCAST 2014", "EUCAST 2013", "EUCAST 2012", "EUCAST 2011", "CLSI 2024", "CLSI 2023", "CLSI 2022", "CLSI 2021", "CLSI 2020", "CLSI 2019", "CLSI 2018", "CLSI 2017", "CLSI 2016", "CLSI 2015", "CLSI 2014", "CLSI 2013", "CLSI 2012", and "CLSI 2011".
Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline. Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline.
\subsection{Additional \code{ggplot2} Functions}{
This package contains several functions that extend the \code{ggplot2} package, to help in visualising AMR data results. All these functions are internally used by \code{\link[=ggplot_sir]{ggplot_sir()}} too.
\itemize{
\item \code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
\item \code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}.
\item \code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). Has multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
\item \code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction.
\item \code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and number of isolates, using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
}
}
} }
\examples{ \examples{
some_mic_values <- random_mic(size = 100) some_mic_values <- random_mic(size = 100)

View File

@ -3,11 +3,6 @@
\name{ggplot_sir} \name{ggplot_sir}
\alias{ggplot_sir} \alias{ggplot_sir}
\alias{geom_sir} \alias{geom_sir}
\alias{facet_sir}
\alias{scale_y_percent}
\alias{scale_sir_colours}
\alias{theme_sir}
\alias{labels_sir_count}
\title{AMR Plots with \code{ggplot2}} \title{AMR Plots with \code{ggplot2}}
\usage{ \usage{
ggplot_sir( ggplot_sir(
@ -46,28 +41,6 @@ geom_sir(
combine_SI = TRUE, combine_SI = TRUE,
... ...
) )
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(..., aesthetics = "fill")
theme_sir()
labels_sir_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15"
)
} }
\arguments{ \arguments{
\item{data}{a \link{data.frame} with column(s) of class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})} \item{data}{a \link{data.frame} with column(s) of class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})}
@ -121,23 +94,20 @@ Use these functions to create bar plots for AMR data analysis. All functions rel
} }
\details{ \details{
At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}. At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}.
\subsection{The Functions}{
\code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_df]{sir_df()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. \code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_df]{sir_df()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
\code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}. Additional functions include:
\itemize{
\code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}. \item \code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
\item \code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}.
\code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. \item \code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
\item \code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction.
\code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction. \item \code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
}
\code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
\code{\link[=ggplot_sir]{ggplot_sir()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}. \code{\link[=ggplot_sir]{ggplot_sir()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}.
} }
}
\examples{ \examples{
\donttest{ \donttest{
if (require("ggplot2") && require("dplyr")) { if (require("ggplot2") && require("dplyr")) {

View File

@ -15,7 +15,12 @@
\alias{plot.sir} \alias{plot.sir}
\alias{autoplot.sir} \alias{autoplot.sir}
\alias{fortify.sir} \alias{fortify.sir}
\title{Plotting for Classes \code{sir}, \code{mic} and \code{disk}} \alias{facet_sir}
\alias{scale_y_percent}
\alias{scale_sir_colours}
\alias{theme_sir}
\alias{labels_sir_count}
\title{Plotting Helpers for AMR Data Analysis}
\usage{ \usage{
scale_x_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...) scale_x_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...)
@ -113,6 +118,32 @@ scale_fill_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...)
) )
\method{fortify}{sir}(object, ...) \method{fortify}{sir}(object, ...)
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(
...,
aesthetics = "fill",
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B")
)
theme_sir()
labels_sir_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15"
)
} }
\arguments{ \arguments{
\item{keep_operators}{a \link{character} specifying how to handle operators (such as \code{>} and \code{<=}) in the input. Accepts one of three values: \code{"all"} (or \code{TRUE}) to keep all operators, \code{"none"} (or \code{FALSE}) to remove all operators, or \code{"edges"} to keep operators only at both ends of the range.} \item{keep_operators}{a \link{character} specifying how to handle operators (such as \code{>} and \code{<=}) in the input. Accepts one of three values: \code{"all"} (or \code{TRUE}) to keep all operators, \code{"none"} (or \code{FALSE}) to remove all operators, or \code{"edges"} to keep operators only at both ends of the range.}
@ -161,6 +192,17 @@ The interpretation of "I" will be named "Increased exposure" for all EUCAST guid
For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} argument are: "EUCAST 2024", "EUCAST 2023", "EUCAST 2022", "EUCAST 2021", "EUCAST 2020", "EUCAST 2019", "EUCAST 2018", "EUCAST 2017", "EUCAST 2016", "EUCAST 2015", "EUCAST 2014", "EUCAST 2013", "EUCAST 2012", "EUCAST 2011", "CLSI 2024", "CLSI 2023", "CLSI 2022", "CLSI 2021", "CLSI 2020", "CLSI 2019", "CLSI 2018", "CLSI 2017", "CLSI 2016", "CLSI 2015", "CLSI 2014", "CLSI 2013", "CLSI 2012", and "CLSI 2011". For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} argument are: "EUCAST 2024", "EUCAST 2023", "EUCAST 2022", "EUCAST 2021", "EUCAST 2020", "EUCAST 2019", "EUCAST 2018", "EUCAST 2017", "EUCAST 2016", "EUCAST 2015", "EUCAST 2014", "EUCAST 2013", "EUCAST 2012", "EUCAST 2011", "CLSI 2024", "CLSI 2023", "CLSI 2022", "CLSI 2021", "CLSI 2020", "CLSI 2019", "CLSI 2018", "CLSI 2017", "CLSI 2016", "CLSI 2015", "CLSI 2014", "CLSI 2013", "CLSI 2012", and "CLSI 2011".
Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline. Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline.
\subsection{Additional \code{ggplot2} Functions}{
This package contains several functions that extend the \code{ggplot2} package, to help in visualising AMR data results. All these functions are internally used by \code{\link[=ggplot_sir]{ggplot_sir()}} too.
\itemize{
\item \code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
\item \code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}.
\item \code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). Has multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
\item \code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction.
\item \code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and number of isolates, using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
}
}
} }
\examples{ \examples{
some_mic_values <- random_mic(size = 100) some_mic_values <- random_mic(size = 100)

View File

@ -213,6 +213,11 @@ pre .co, .co {
color: var(--amr-green-dark) !important; color: var(--amr-green-dark) !important;
font-style: italic !important; font-style: italic !important;
} }
div.sourceCode  pre .co,
div.sourceCode .co {
/* comments in example sections, since functions are already green too */
color: var(--bs-gray-600) !important;
}
pre code .r-out, pre code .r-out,
pre code .r-msg { pre code .r-msg {
/* output of functions */ /* output of functions */