mirror of
https://github.com/msberends/AMR.git
synced 2025-07-09 06:51:48 +02:00
First CRAN submission edits
This commit is contained in:
@ -44,11 +44,14 @@ interpretive_reading(...)
|
||||
|
||||
\item{...}{parameters that are passed on to \code{EUCAST_rules}}
|
||||
}
|
||||
\value{
|
||||
table with edited variables of antibiotics.
|
||||
}
|
||||
\description{
|
||||
Apply expert rules (like intrinsic resistance), as defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST, \url{http://eucast.org}), see \emph{Source}.
|
||||
}
|
||||
\examples{
|
||||
\dontrun{
|
||||
tbl <- interpretive_reading(tbl)
|
||||
tbl <- EUCAST_rules(tbl)
|
||||
}
|
||||
}
|
||||
|
@ -40,7 +40,6 @@ abname("AMCL", to = "atc")
|
||||
|
||||
abname("J01CR02", from = "atc", to = "umcg")
|
||||
# "AMCL"
|
||||
|
||||
}
|
||||
\keyword{ab}
|
||||
\keyword{antibiotics}
|
||||
|
@ -20,3 +20,15 @@ New class \code{mic}
|
||||
\description{
|
||||
This transforms a vector to a new class\code{mic}, which is an ordered factor valid MIC values as levels. Invalid MIC values will be translated as \code{NA} with a warning.
|
||||
}
|
||||
\examples{
|
||||
mic_data <- as.mic(c(">=32", "1.0", "1", "1.00", 8, "<=0.128", "8", "16", "16"))
|
||||
is.mic(mic_data)
|
||||
plot(mic_data)
|
||||
|
||||
\donttest{
|
||||
library(dplyr)
|
||||
tbl \%>\%
|
||||
mutate_at(vars(ends_with("_mic")), as.mic)
|
||||
sapply(mic_data, is.mic)
|
||||
}
|
||||
}
|
||||
|
@ -20,6 +20,14 @@ This transforms a vector to a new class \code{rsi}, which is an ordered factor w
|
||||
}
|
||||
\examples{
|
||||
rsi_data <- as.rsi(c(rep("S", 474), rep("I", 36), rep("R", 370)))
|
||||
|
||||
rsi_data <- as.rsi(c(rep("S", 474), rep("I", 36), rep("R", 370), "A", "B", "C"))
|
||||
is.rsi(rsi_data)
|
||||
plot(rsi_data)
|
||||
|
||||
\donttest{
|
||||
library(dplyr)
|
||||
tbl \%>\%
|
||||
mutate_at(vars(ends_with("_rsi")), as.rsi)
|
||||
sapply(mic_data, is.rsi)
|
||||
}
|
||||
}
|
||||
|
@ -20,7 +20,7 @@ atc_property(atc_code, property, administration = "O",
|
||||
\item{url}{url of website of the WHO. The sign \code{\%s} can be used as a placeholder for ATC codes.}
|
||||
}
|
||||
\description{
|
||||
Gets data from the WHO to determine properties of an ATC of e.g. an antibiotic.
|
||||
Gets data from the WHO to determine properties of an ATC of e.g. an antibiotic. \strong{This function requires an internet connection.}
|
||||
}
|
||||
\details{
|
||||
Abbreviations for the property \code{"Adm.R"} (parameter \code{administration}):
|
||||
@ -49,3 +49,9 @@ Abbreviations for the property \code{"U"} (unit):
|
||||
\item{\code{"ml"}}{ = milliliter (e.g. eyedrops)}
|
||||
}
|
||||
}
|
||||
\examples{
|
||||
\donttest{
|
||||
atc_property("J01CA04", "DDD", "O") # oral DDD of amoxicillin
|
||||
atc_property("J01CA04", "DDD", "P") # parenteral DDD of amoxicillin
|
||||
}
|
||||
}
|
||||
|
@ -57,6 +57,7 @@ To conduct an analysis of antimicrobial resistance, you should only include the
|
||||
\examples{
|
||||
\dontrun{
|
||||
|
||||
# set key antibiotics to a new variable
|
||||
tbl$keyab <- key_antibiotics(tbl)
|
||||
|
||||
tbl$first_isolate <-
|
||||
|
14
man/join.Rd
14
man/join.Rd
@ -9,7 +9,7 @@
|
||||
\alias{full_join_bactlist}
|
||||
\alias{semi_join_bactlist}
|
||||
\alias{anti_join_bactlist}
|
||||
\title{Join van tabel en \code{bactlist}}
|
||||
\title{Join a table with \code{bactlist}}
|
||||
\usage{
|
||||
inner_join_bactlist(x, by = "bactid", ...)
|
||||
|
||||
@ -36,3 +36,15 @@ Join the list of microorganisms \code{\link{bactlist}} easily to an existing tab
|
||||
\details{
|
||||
As opposed to the \code{\link[dplyr]{join}} functions of \code{dplyr}, at default existing columns will get a suffix \code{"2"} and the newly joined columns will not get a suffix. See \code{\link[dplyr]{join}} for more information.
|
||||
}
|
||||
\examples{
|
||||
df <- data.frame(date = seq(from = as.Date("2018-01-01"),
|
||||
to = as.Date("2018-01-07"),
|
||||
by = 1),
|
||||
bacteria_id = c("STAAUR", "STAAUR", "STAAUR", "STAAUR",
|
||||
"ESCCOL", "ESCCOL", "ESCCOL"),
|
||||
stringsAsFactors = FALSE)
|
||||
|
||||
colnames(df)
|
||||
df2 <- left_join_bactlist(df, "bacteria_id")
|
||||
colnames(df2)
|
||||
}
|
||||
|
@ -20,9 +20,18 @@ key_antibiotics(tbl, col_bactcode = "bacteriecode", info = TRUE,
|
||||
|
||||
\item{amcl, amox, cfot, cfta, cftr, cfur, cipr, clar, clin, clox, doxy, gent, line, mero, peni, pita, rifa, teic, trsu, vanc}{column names of antibiotics.}
|
||||
}
|
||||
\value{
|
||||
Character of length 1.
|
||||
}
|
||||
\description{
|
||||
Key antibiotics based on bacteria ID
|
||||
}
|
||||
\examples{
|
||||
\donttest{
|
||||
#' # set key antibiotics to a new variable
|
||||
tbl$keyab <- key_antibiotics(tbl)
|
||||
}
|
||||
}
|
||||
\seealso{
|
||||
\code{\link{mo_property}} \code{\link{ablist}}
|
||||
}
|
||||
|
@ -1,24 +0,0 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/first_isolates.R
|
||||
\name{key_antibiotics_equal}
|
||||
\alias{key_antibiotics_equal}
|
||||
\title{Compare key antibiotics}
|
||||
\usage{
|
||||
key_antibiotics_equal(x, y, ignore_I = TRUE, info = FALSE)
|
||||
}
|
||||
\arguments{
|
||||
\item{x, y}{tekst (or multiple text vectors) with antimicrobial interpretations}
|
||||
|
||||
\item{ignore_I}{ignore \code{"I"} as antimicrobial interpretation of key antibiotics (with \code{FALSE}, changes in antibiograms from S to I and I to R will be interpreted as difference)}
|
||||
|
||||
\item{info}{print progress}
|
||||
}
|
||||
\value{
|
||||
logical
|
||||
}
|
||||
\description{
|
||||
Check whether two text values with key antibiotics match. Supports vectors.
|
||||
}
|
||||
\seealso{
|
||||
\code{\link{key_antibiotics}}
|
||||
}
|
21
man/rsi.Rd
21
man/rsi.Rd
@ -24,28 +24,27 @@ rsi(ab1, ab2 = NA, interpretation = "IR", minimum = 30, percent = FALSE,
|
||||
Double or, when \code{percent = TRUE}, a character.
|
||||
}
|
||||
\description{
|
||||
This function can be used in \code{\link[dplyr]{summarise}}, see \emph{Examples}. CaBerekent het percentage S, SI, I, IR of R van een lijst isolaten.
|
||||
This function can be used in \code{dplyr}s \code{\link[dplyr]{summarise}}, see \emph{Examples}. Calculate the percentage S, SI, I, IR or R of a vector of isolates.
|
||||
}
|
||||
\details{
|
||||
This function uses the \code{\link{rsi_df}} function internally.
|
||||
}
|
||||
\examples{
|
||||
\dontrun{
|
||||
tbl \%>\%
|
||||
group_by(hospital) \%>\%
|
||||
summarise(cipr = rsi(cipr))
|
||||
|
||||
tbl \%>\%
|
||||
group_by(year, hospital) \%>\%
|
||||
summarise(
|
||||
isolates = n(),
|
||||
cipro = rsi(cipr, percent = TRUE),
|
||||
amoxi = rsi(amox, percent = TRUE)
|
||||
)
|
||||
cipro = rsi(cipr \%>\% as.rsi(), percent = TRUE),
|
||||
amoxi = rsi(amox \%>\% as.rsi(), percent = TRUE))
|
||||
|
||||
rsi(as.rsi(isolates$amox))
|
||||
|
||||
tbl \%>\%
|
||||
group_by(hospital) \%>\%
|
||||
summarise(cipr = rsi(cipr))
|
||||
|
||||
rsi(isolates$amox)
|
||||
|
||||
rsi(isolates$amcl, interpretation = "S")
|
||||
rsi(as.rsi(isolates$amcl), interpretation = "S")
|
||||
}
|
||||
}
|
||||
\keyword{antibiotics}
|
||||
|
@ -40,6 +40,7 @@ Create a prediction model to predict antimicrobial resistance for the next years
|
||||
rsi_predict(tbl[which(first_isolate == TRUE & genus == "Haemophilus"),], "amcl")
|
||||
|
||||
# or with dplyr so you can actually read it:
|
||||
library(dplyr)
|
||||
tbl \%>\%
|
||||
filter(first_isolate == TRUE,
|
||||
genus == "Haemophilus") \%>\%
|
||||
|
Reference in New Issue
Block a user