@@ -146,21 +146,21 @@ make the structure of your data generally look like this:
-
2025-02-23
+
2025-02-26
abcd
Escherichia coli
S
S
-
2025-02-23
+
2025-02-26
abcd
Escherichia coli
S
R
-
2025-02-23
+
2025-02-26
efgh
Escherichia coli
R
@@ -697,9 +697,9 @@ previously mentioned antibiotic class selectors:
#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
-
+
-
+
@@ -727,7 +727,7 @@ previously mentioned antibiotic class selectors:
22% (12-35%)
-
E. coli
+
E. coli
100% (98-100%)
98% (96-99%)
100% (99-100%)
@@ -736,7 +736,7 @@ previously mentioned antibiotic class selectors:
97% (96-99%)
-
E. faecalis
+
E. faecalis
0% (0-9%)
0% (0-9%)
100% (91-100%)
@@ -745,7 +745,7 @@ previously mentioned antibiotic class selectors:
0% (0-9%)
-
K. pneumoniae
+
K. pneumoniae
90% (79-96%)
100% (93-100%)
@@ -754,7 +754,7 @@ previously mentioned antibiotic class selectors:
90% (79-96%)
-
P. aeruginosa
+
P. aeruginosa
100% (88-100%)
@@ -763,7 +763,7 @@ previously mentioned antibiotic class selectors:
100% (88-100%)
-
P. mirabilis
+
P. mirabilis
94% (80-99%)
94% (79-99%)
@@ -772,7 +772,7 @@ previously mentioned antibiotic class selectors:
94% (80-99%)
-
S. aureus
+
S. aureus
99% (97-100%)
@@ -781,7 +781,7 @@ previously mentioned antibiotic class selectors:
98% (92-100%)
-
S. epidermidis
+
S. epidermidis
0% (0-8%)
79% (71-85%)
@@ -790,7 +790,7 @@ previously mentioned antibiotic class selectors:
51% (40-61%)
-
S. hominis
+
S. hominis
92% (84-97%)
@@ -799,7 +799,7 @@ previously mentioned antibiotic class selectors:
85% (74-93%)
-
S. pneumoniae
+
S. pneumoniae
0% (0-3%)
0% (0-3%)
@@ -877,49 +877,49 @@ a plus + character like this:
-
E. coli
+
E. coli
94% (92-96%)
100% (98-100%)
99% (97-100%)
-
K. pneumoniae
+
K. pneumoniae
89% (77-96%)
93% (83-98%)
93% (83-98%)
-
P. aeruginosa
+
P. aeruginosa
100% (88-100%)
100% (88-100%)
-
P. mirabilis
+
P. mirabilis
100% (90-100%)
100% (90-100%)
-
S. aureus
+
S. aureus
100% (98-100%)
100% (96-100%)
-
S. epidermidis
+
S. epidermidis
100% (97-100%)
100% (92-100%)
-
S. hominis
+
S. hominis
100% (95-100%)
100% (93-100%)
-
S. pneumoniae
+
S. pneumoniae
100% (97-100%)
100% (97-100%)
100% (97-100%)
@@ -940,10 +940,10 @@ argument must be used. This can be any column in the data, or e.g. an
#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
-
+
-
+
@@ -994,7 +994,7 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
-
E. coli
+
E. coli
100% (97-100%)
98% (96-99%)
100% (99-100%)
@@ -1004,7 +1004,7 @@ argument must be used. This can be any column in the data, or e.g. an
ICU
-
E. coli
+
E. coli
100% (93-100%)
99% (95-100%)
100% (97-100%)
@@ -1014,7 +1014,7 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
-
K. pneumoniae
+
K. pneumoniae
92% (81-98%)
100% (92-100%)
@@ -1024,7 +1024,7 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
-
P. mirabilis
+
P. mirabilis
100% (88-100%)
@@ -1034,7 +1034,7 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
-
S. aureus
+
S. aureus
99% (95-100%)
@@ -1044,7 +1044,7 @@ argument must be used. This can be any column in the data, or e.g. an
ICU
-
S. aureus
+
S. aureus
100% (95-100%)
@@ -1054,7 +1054,7 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
-
S. epidermidis
+
S. epidermidis
82% (72-90%)
@@ -1064,7 +1064,7 @@ argument must be used. This can be any column in the data, or e.g. an
ICU
-
S. epidermidis
+
S. epidermidis
72% (60-82%)
@@ -1074,7 +1074,7 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
-
S. hominis
+
S. hominis
96% (85-99%)
@@ -1084,7 +1084,7 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
-
S. pneumoniae
+
S. pneumoniae
0% (0-5%)
0% (0-5%)
@@ -1094,7 +1094,7 @@ argument must be used. This can be any column in the data, or e.g. an
ICU
-
S. pneumoniae
+
S. pneumoniae
0% (0-12%)
0% (0-12%)
diff --git a/articles/AMR_for_Python.html b/articles/AMR_for_Python.html
index 0a491091b..4cfe92890 100644
--- a/articles/AMR_for_Python.html
+++ b/articles/AMR_for_Python.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9156
+ 2.1.1.9158
diff --git a/articles/AMR_with_tidymodels.html b/articles/AMR_with_tidymodels.html
index 2737e7f48..d7ced2265 100644
--- a/articles/AMR_with_tidymodels.html
+++ b/articles/AMR_with_tidymodels.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9156
+ 2.1.1.9158
@@ -144,9 +144,6 @@ package.
#> ✖recipes::step() masks stats::step()library(AMR)# For AMR data analysis
-# Load the example_isolates dataset
-data("example_isolates")# Preloaded dataset with AMR results
-
# Select relevant columns for predictiondata<-example_isolates%>%# select AB results dynamically
@@ -338,7 +335,7 @@ set.
metrics() computes evaluation metrics like accuracy and
kappa.
-
It appears we can predict the Gram based on AMR results with a 0.995
+
It appears we can predict the Gram based on AMR results with a 99.5%
accuracy based on AMR results of aminoglycosides and beta-lactam
antibiotics. The ROC curve looks like this:
(this beta version will eventually become v3.0. We’re happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using the instructions here.)
-
A New Milestone: AMR v3.0 with One Health Support (= Human + Veterinary + Environmental)
+
A New Milestone: AMR v3.0 with One Health Support (= Human + Veterinary + Environmental)
This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the University of Prince Edward Island’s Atlantic Veterinary College, Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change.
-
Breaking
+
Breaking
Removed all functions and references that used the deprecated rsi class, which were all replaced with their sir equivalents two years ago
-
New
+
New
One Health implementation
Function as.sir() now has extensive support for veterinary breakpoints from CLSI. Use breakpoint_type = "animal" and set the host argument to a variable that contains animal species names.
@@ -111,7 +111,7 @@
-
Changed
+
Changed
SIR interpretation
It is now possible to use column names for argument ab, mo, and uti: as.sir(..., ab = "column1", mo = "column2", uti = "column3"). This greatly improves the flexibility for users.
Users can now set their own criteria (using regular expressions) as to what should be considered S, I, R, SDD, and NI.
@@ -164,7 +164,7 @@
Fixed a bug for when antibiogram() returns an empty data set
Fix for mapping ‘high level’ antibiotics in as.ab() (amphotericin B-high, gentamicin-high, kanamycin-high, streptomycin-high, tobramycin-high)
-
Improved overall algorithm of as.ab() for better performance and accuracy
+
Improved overall algorithm of as.ab() for better performance and accuracy, including the new function as_reset_session() to remove earlier coercions.
Improved overall algorithm of as.mo() for better performance and accuracy. Specifically:
More weight is given to genus and species combinations in cases where the subspecies is miswritten, so that the result will be the correct genus and species
Genera from the World Health Organization’s (WHO) Priority Pathogen List now have the highest prevalence
@@ -181,7 +181,7 @@
Added console colours support of sir class for Positron
-
Other
+
Other
Added Dr. Larisse Bolton as contributor for her fantastic implementation of WISCA in a mathematically solid way
Added Matthew Saab, Dr. Jordan Stull, and Prof. Javier Sanchez as contributors for their tremendous input on veterinary breakpoints and interpretations
Greatly improved vctrs integration, a Tidyverse package working in the background for many Tidyverse functions. For users, this means that functions such as dplyr’s bind_rows(), rowwise() and c_across() are now supported for e.g. columns of class mic. Despite this, this AMR package is still zero-dependent on any other package, including dplyr and vctrs.
@@ -189,7 +189,7 @@
Stopped support for SAS (.xpt) files, since their file structure and extremely inefficient and requires more disk space than GitHub allows in a single commit.
-
Older Versions
+
Older Versions
This changelog only contains changes from AMR v3.0 (February 2025) and later.