mirror of
https://github.com/msberends/AMR.git
synced 2025-07-08 18:01:50 +02:00
fix AMR vignette
This commit is contained in:
@ -569,7 +569,8 @@ plot(disk_values, mo = "E. coli", ab = "cipro")
|
||||
And when using the `ggplot2` package, but now choosing the latest implemented CLSI guideline (notice that the EUCAST-specific term "Susceptible, incr. exp." has changed to "Intermediate"):
|
||||
|
||||
```{r disk_plots_mo_ab, message = FALSE, warning = FALSE}
|
||||
autoplot(disk_values,
|
||||
autoplot(
|
||||
disk_values,
|
||||
mo = "E. coli",
|
||||
ab = "cipro",
|
||||
guideline = "CLSI"
|
||||
@ -580,22 +581,22 @@ autoplot(disk_values,
|
||||
|
||||
The next example uses the `example_isolates` data set. This is a data set included with this package and contains 2,000 microbial isolates with their full antibiograms. It reflects reality and can be used to practise AMR data analysis.
|
||||
|
||||
We will compare the resistance to fosfomycin (column `FOS`) in hospital A and D. The input for the `fisher.test()` can be retrieved with a transformation like this:
|
||||
We will compare the resistance to amoxicillin/clavulanic acid (column `FOS`) between an ICU and other clinical wards. The input for the `fisher.test()` can be retrieved with a transformation like this:
|
||||
|
||||
```{r, results = 'markup'}
|
||||
# use package 'tidyr' to pivot data:
|
||||
library(tidyr)
|
||||
|
||||
check_FOS <- example_isolates %>%
|
||||
filter(ward %in% c("A", "D")) %>% # filter on only hospitals A and D
|
||||
select(ward, FOS) %>% # select the hospitals and fosfomycin
|
||||
group_by(ward) %>% # group on the hospitals
|
||||
filter(ward %in% c("ICU", "Clinical")) %>% # filter on only these wards
|
||||
select(ward, AMC) %>% # select the wards and amoxi/clav
|
||||
group_by(ward) %>% # group on the wards
|
||||
count_df(combine_SI = TRUE) %>% # count all isolates per group (ward)
|
||||
pivot_wider(
|
||||
names_from = ward, # transform output so A and D are columns
|
||||
names_from = ward, # transform output so "ICU" and "Clinical" are columns
|
||||
values_from = value
|
||||
) %>%
|
||||
select(A, D) %>% # and only select these columns
|
||||
select(ICU, Clinical) %>% # and only select these columns
|
||||
as.matrix() # transform to a good old matrix for fisher.test()
|
||||
|
||||
check_FOS
|
||||
@ -608,4 +609,4 @@ We can apply the test now with:
|
||||
fisher.test(check_FOS)
|
||||
```
|
||||
|
||||
As can be seen, the p value is `r round(fisher.test(check_FOS)$p.value, 3)`, which means that the fosfomycin resistance found in isolates from patients in hospital A and D are really different.
|
||||
As can be seen, the p value is practically zero (`r format(fisher.test(check_FOS)$p.value, scientific = FALSE)`), which means that the amoxicillin/clavulanic acid resistance found in isolates between patients in ICUs and other clinical wards are really different.
|
||||
|
Reference in New Issue
Block a user