From e9cf3d557211bdaeed2ba08fb04adf0a1c3f07f8 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <> Date: Mon, 22 Dec 2025 19:04:39 +0100 Subject: [PATCH] (v3.0.1.9008) tidymodels vignette --- DESCRIPTION | 2 +- NEWS.md | 2 +- vignettes/AMR_with_tidymodels.Rmd | 15 ++++++++------- 3 files changed, 10 insertions(+), 9 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 8c02fb89e..94e6ed0d0 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,5 +1,5 @@ Package: AMR -Version: 3.0.1.9007 +Version: 3.0.1.9008 Date: 2025-12-22 Title: Antimicrobial Resistance Data Analysis Description: Functions to simplify and standardise antimicrobial resistance (AMR) diff --git a/NEWS.md b/NEWS.md index b42ec4e79..1bdfa4c4b 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,4 +1,4 @@ -# AMR 3.0.1.9007 +# AMR 3.0.1.9008 ### New * Integration with the **tidymodels** framework to allow seamless use of SIR, MIC and disk data in modelling pipelines via `recipes` diff --git a/vignettes/AMR_with_tidymodels.Rmd b/vignettes/AMR_with_tidymodels.Rmd index 00583f05e..80777686d 100644 --- a/vignettes/AMR_with_tidymodels.Rmd +++ b/vignettes/AMR_with_tidymodels.Rmd @@ -1,6 +1,6 @@ --- title: "AMR with tidymodels" -output: +output: rmarkdown::html_vignette: toc: true toc_depth: 3 @@ -8,7 +8,7 @@ vignette: > %\VignetteIndexEntry{AMR with tidymodels} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} -editor_options: +editor_options: chunk_output_type: console --- @@ -208,7 +208,7 @@ predictions %>% ### **Conclusion** -In this post, we demonstrated how to build a machine learning pipeline with the `tidymodels` framework and the `AMR` package. By combining selector functions like `aminoglycosides()` and `betalactams()` with `tidymodels`, we efficiently prepared data, trained a model, and evaluated its performance. +In this example, we demonstrated how to build a machine learning pipeline with the `tidymodels` framework and the `AMR` package. By combining selector functions like `aminoglycosides()` and `betalactams()` with `tidymodels`, we efficiently prepared data, trained a model, and evaluated its performance. This workflow is extensible to other antimicrobial classes and resistance patterns, empowering users to analyse AMR data systematically and reproducibly. @@ -267,8 +267,8 @@ testing_data <- testing(split) # Define the recipe mic_recipe <- recipe(esbl ~ ., data = training_data) %>% remove_role(genus, old_role = "predictor") %>% # Remove non-informative variable - step_mic_log2(all_mic_predictors()) #%>% # Log2 transform all MIC predictors - # prep() + step_mic_log2(all_mic_predictors()) %>% # Log2 transform all MIC predictors + prep() mic_recipe ``` @@ -361,11 +361,12 @@ predictions %>% colour = correct)) + scale_colour_manual(values = c(Right = "green3", Wrong = "red2"), name = "Correct?") + - geom_point() + + geom_point() + scale_y_continuous(labels = function(x) paste0(x * 100, "%"), limits = c(0.5, 1)) + theme_minimal() ``` + ### **Conclusion** In this example, we showcased how the new `AMR`-specific recipe steps simplify working with `` columns in `tidymodels`. The `step_mic_log2()` transformation converts ordered MICs to log2-transformed numerics, improving compatibility with classification models. @@ -487,7 +488,7 @@ fitted_workflow_time <- resistance_workflow_time %>% # Make predictions predictions_time <- fitted_workflow_time %>% predict(test_time) %>% - bind_cols(test_time) + bind_cols(test_time) # Evaluate model metrics_time <- predictions_time %>%