mirror of
https://github.com/msberends/AMR.git
synced 2025-09-14 13:09:38 +02:00
fixes
This commit is contained in:
@@ -11,7 +11,7 @@
|
||||
\alias{as.sir.disk}
|
||||
\alias{as.sir.data.frame}
|
||||
\alias{sir_interpretation_history}
|
||||
\title{Interpret MIC and Disk Values, or Clean Raw SIR Data}
|
||||
\title{Translate MIC and Disk Diffusion to SIR, or Clean Existing SIR Data}
|
||||
\format{
|
||||
An object of class \code{sir} (inherits from \code{ordered}, \code{factor}) of length 1.
|
||||
}
|
||||
|
@@ -16,7 +16,7 @@ mean_amr_distance(x, ...)
|
||||
amr_distance_from_row(amr_distance, row)
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{a vector of class \link[=as.sir]{rsi}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes}
|
||||
\item{x}{a vector of class \link[=as.sir]{sir}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes}
|
||||
|
||||
\item{...}{variables to select (supports \link[tidyselect:language]{tidyselect language} such as \code{column1:column4} and \code{where(is.mic)}, and can thus also be \link[=ab_selector]{antibiotic selectors}}
|
||||
|
||||
@@ -46,9 +46,9 @@ Isolates with distances less than 0.01 difference from each other should be cons
|
||||
}
|
||||
|
||||
\examples{
|
||||
rsi <- random_sir(10)
|
||||
rsi
|
||||
mean_amr_distance(rsi)
|
||||
sir <- random_sir(10)
|
||||
sir
|
||||
mean_amr_distance(sir)
|
||||
|
||||
mic <- random_mic(10)
|
||||
mic
|
||||
|
@@ -71,7 +71,7 @@ sir_sf(
|
||||
|
||||
\item{only_all_tested}{(for combination therapies, i.e. using more than one variable for \code{...}): a \link{logical} to indicate that isolates must be tested for all antibiotics, see section \emph{Combination Therapy} below}
|
||||
|
||||
\item{ab_result}{antibiotic results to test against, must be one of more values of "R", "S", "I"}
|
||||
\item{ab_result}{antibiotic results to test against, must be one or more values of "S", "I", or "R"}
|
||||
|
||||
\item{confidence_level}{the confidence level for the returned confidence interval. For the calculation, the number of S or SI isolates, and R isolates are compared with the total number of available isolates with R, S, or I by using \code{\link[=binom.test]{binom.test()}}, i.e., the Clopper-Pearson method.}
|
||||
|
||||
@@ -264,7 +264,7 @@ if (require("dplyr")) {
|
||||
combination_n = count_all(CIP, GEN)
|
||||
)
|
||||
|
||||
# Get proportions S/I/R immediately of all rsi columns
|
||||
# Get proportions S/I/R immediately of all sir columns
|
||||
example_isolates \%>\%
|
||||
select(AMX, CIP) \%>\%
|
||||
proportion_df(translate = FALSE)
|
||||
|
Reference in New Issue
Block a user