mirror of
https://github.com/msberends/AMR.git
synced 2025-01-13 12:11:37 +01:00
added vignette of freq
This commit is contained in:
parent
25b3346d9a
commit
f05e7178cb
1
.gitignore
vendored
1
.gitignore
vendored
@ -4,3 +4,4 @@
|
|||||||
.Ruserdata
|
.Ruserdata
|
||||||
AMR.Rproj
|
AMR.Rproj
|
||||||
tests/testthat/Rplots.pdf
|
tests/testthat/Rplots.pdf
|
||||||
|
inst/doc
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
Package: AMR
|
Package: AMR
|
||||||
Version: 0.2.0
|
Version: 0.2.0.9000
|
||||||
Date: 2018-05-02
|
Date: 2018-05-09
|
||||||
Title: Antimicrobial Resistance Analysis
|
Title: Antimicrobial Resistance Analysis
|
||||||
Authors@R: c(
|
Authors@R: c(
|
||||||
person(
|
person(
|
||||||
@ -37,7 +37,10 @@ Imports:
|
|||||||
tibble
|
tibble
|
||||||
Suggests:
|
Suggests:
|
||||||
testthat (>= 1.0.2),
|
testthat (>= 1.0.2),
|
||||||
covr (>= 3.0.1)
|
covr (>= 3.0.1),
|
||||||
|
knitr,
|
||||||
|
rmarkdown
|
||||||
|
VignetteBuilder: knitr
|
||||||
URL: https://github.com/msberends/AMR
|
URL: https://github.com/msberends/AMR
|
||||||
BugReports: https://github.com/msberends/AMR/issues
|
BugReports: https://github.com/msberends/AMR/issues
|
||||||
License: GPL-2 | file LICENSE
|
License: GPL-2 | file LICENSE
|
||||||
|
11
NEWS.md
11
NEWS.md
@ -1,4 +1,13 @@
|
|||||||
# 0.2.0
|
# 0.2.9000 (development version)
|
||||||
|
#### New
|
||||||
|
* Vignettes about frequency tables: [vignettes/freq.html](vignettes/freq.html)
|
||||||
|
* Possibility to globally set the default for the amount of items to print in frequency tables (`freq` function), with `options(max.print.freq = n)`
|
||||||
|
|
||||||
|
#### Changed
|
||||||
|
* Renamed `toConsole` parameter of `freq` to `as.data.frame`
|
||||||
|
* Small translational improvements to the `septic_patients` dataset
|
||||||
|
|
||||||
|
# 0.2.0 (latest stable version)
|
||||||
#### New
|
#### New
|
||||||
* Full support for Windows, Linux and macOS
|
* Full support for Windows, Linux and macOS
|
||||||
* Full support for old R versions, only R-3.0.0 (April 2013) or later is needed (needed packages may have other dependencies)
|
* Full support for old R versions, only R-3.0.0 (April 2013) or later is needed (needed packages may have other dependencies)
|
||||||
|
63
R/freq.R
63
R/freq.R
@ -21,10 +21,10 @@
|
|||||||
#' Create a frequency table of a vector of data, a single column or a maximum of 9 columns of a data frame. Supports markdown for reports.
|
#' Create a frequency table of a vector of data, a single column or a maximum of 9 columns of a data frame. Supports markdown for reports.
|
||||||
#' @param x data
|
#' @param x data
|
||||||
#' @param sort.count Sort on count. Use \code{FALSE} to sort alphabetically on item.
|
#' @param sort.count Sort on count. Use \code{FALSE} to sort alphabetically on item.
|
||||||
#' @param nmax number of row to print. Use \code{nmax = 0} or \code{nmax = NA} to print all rows.
|
#' @param nmax number of row to print. The default, \code{15}, uses \code{\link[base]{getOption}("max.print.freq")}. Use \code{nmax = 0} or \code{nmax = NA} to print all rows.
|
||||||
#' @param na.rm a logical value indicating whether NA values should be removed from the frequency table. The header will always print the amount of\code{NA}s.
|
#' @param na.rm a logical value indicating whether NA values should be removed from the frequency table. The header will always print the amount of \code{NA}s.
|
||||||
#' @param markdown print table in markdown format (this forces \code{nmax = NA})
|
#' @param markdown print table in markdown format (this forces \code{nmax = NA})
|
||||||
#' @param toConsole Print table to the console. Use \code{FALSE} to assign the table to an object.
|
#' @param as.data.frame return frequency table without header as a \code{data.frame} (e.g. to assign the table to an object)
|
||||||
#' @param digits how many significant digits are to be used for numeric values (not for the items themselves, that depends on \code{\link{getOption}("digits")})
|
#' @param digits how many significant digits are to be used for numeric values (not for the items themselves, that depends on \code{\link{getOption}("digits")})
|
||||||
#' @param sep a character string to separate the terms when selecting multiple columns
|
#' @param sep a character string to separate the terms when selecting multiple columns
|
||||||
#' @details For numeric values, the next values will be calculated and shown into the header:
|
#' @details For numeric values, the next values will be calculated and shown into the header:
|
||||||
@ -32,7 +32,7 @@
|
|||||||
#' \item{Mean, using \code{\link[base]{mean}}}
|
#' \item{Mean, using \code{\link[base]{mean}}}
|
||||||
#' \item{Standard deviation, using \code{\link[stats]{sd}}}
|
#' \item{Standard deviation, using \code{\link[stats]{sd}}}
|
||||||
#' \item{Five numbers of Tukey (min, Q1, median, Q3, max), using \code{\link[stats]{fivenum}}}
|
#' \item{Five numbers of Tukey (min, Q1, median, Q3, max), using \code{\link[stats]{fivenum}}}
|
||||||
#' \item{Outliers (count and list), using \code{\link{boxplot.stats}}}
|
#' \item{Outliers (total count and unique count), using \code{\link{boxplot.stats}}}
|
||||||
#' \item{Coefficient of variation (CV), the standard deviation divided by the mean}
|
#' \item{Coefficient of variation (CV), the standard deviation divided by the mean}
|
||||||
#' \item{Coefficient of quartile variation (CQV, sometimes called coefficient of dispersion), calculated as \code{(Q3 - Q1) / (Q3 + Q1)} using \code{\link{quantile}} with \code{type = 6} as quantile algorithm to comply with SPSS standards}
|
#' \item{Coefficient of quartile variation (CQV, sometimes called coefficient of dispersion), calculated as \code{(Q3 - Q1) / (Q3 + Q1)} using \code{\link{quantile}} with \code{type = 6} as quantile algorithm to comply with SPSS standards}
|
||||||
#' }
|
#' }
|
||||||
@ -63,13 +63,13 @@
|
|||||||
#' years <- septic_patients %>%
|
#' years <- septic_patients %>%
|
||||||
#' mutate(year = format(date, "%Y")) %>%
|
#' mutate(year = format(date, "%Y")) %>%
|
||||||
#' select(year) %>%
|
#' select(year) %>%
|
||||||
#' freq(toConsole = FALSE)
|
#' freq(as.data.frame = TRUE)
|
||||||
freq <- function(x,
|
freq <- function(x,
|
||||||
sort.count = TRUE,
|
sort.count = TRUE,
|
||||||
nmax = 15,
|
nmax = getOption("max.print.freq"),
|
||||||
na.rm = TRUE,
|
na.rm = TRUE,
|
||||||
markdown = FALSE,
|
markdown = FALSE,
|
||||||
toConsole = TRUE,
|
as.data.frame = FALSE,
|
||||||
digits = 2,
|
digits = 2,
|
||||||
sep = " ") {
|
sep = " ") {
|
||||||
|
|
||||||
@ -156,8 +156,8 @@ freq <- function(x,
|
|||||||
stop('A maximum of 9 columns can be analysed at the same time.', call. = FALSE)
|
stop('A maximum of 9 columns can be analysed at the same time.', call. = FALSE)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (markdown == TRUE & toConsole == FALSE) {
|
if (markdown == TRUE & as.data.frame == TRUE) {
|
||||||
warning('`toConsole = FALSE` will be ignored when `markdown = TRUE`.')
|
warning('`as.data.frame = TRUE` will be ignored when `markdown = TRUE`.')
|
||||||
}
|
}
|
||||||
|
|
||||||
if (mult.columns > 1) {
|
if (mult.columns > 1) {
|
||||||
@ -232,7 +232,7 @@ freq <- function(x,
|
|||||||
x <- x %>% format(formatdates)
|
x <- x %>% format(formatdates)
|
||||||
}
|
}
|
||||||
|
|
||||||
if (toConsole == TRUE) {
|
if (as.data.frame == FALSE) {
|
||||||
cat(header)
|
cat(header)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -244,22 +244,30 @@ freq <- function(x,
|
|||||||
warning('All observations are unique.', call. = FALSE)
|
warning('All observations are unique.', call. = FALSE)
|
||||||
}
|
}
|
||||||
|
|
||||||
if (nmax == 0 | is.na(nmax)) {
|
nmax.set <- !missing(nmax)
|
||||||
|
if (is.null(nmax) & is.null(base::getOption("max.print.freq", default = NULL))) {
|
||||||
|
# default for max print setting
|
||||||
|
nmax <- 15
|
||||||
|
}
|
||||||
|
|
||||||
|
if (nmax == 0 | is.na(nmax) | is.null(nmax)) {
|
||||||
nmax <- length(x)
|
nmax <- length(x)
|
||||||
}
|
}
|
||||||
nmax.1 <- min(length(x), nmax + 1)
|
nmax.1 <- min(length(x), nmax + 1)
|
||||||
|
|
||||||
# create table with counts and percentages
|
# create table with counts and percentages
|
||||||
|
column_names <- c('Item', 'Count', 'Percent', 'Cum. Count', 'Cum. Percent', '(Factor Level)')
|
||||||
|
column_names_df <- c('item', 'count', 'percent', 'cum_count', 'cum_percent', 'factor_level')
|
||||||
if (any(class(x) == 'factor')) {
|
if (any(class(x) == 'factor')) {
|
||||||
df <- tibble::tibble(Item = x,
|
df <- tibble::tibble(Item = x,
|
||||||
Fctlvl = x %>% as.integer()) %>%
|
Fctlvl = x %>% as.integer()) %>%
|
||||||
group_by(Item, Fctlvl)
|
group_by(Item, Fctlvl)
|
||||||
column_names <- c('Item', 'Count', 'Percent', 'Cum. Count', 'Cum. Percent', '(Factor Level)')
|
|
||||||
column_align <- c('l', 'r', 'r', 'r', 'r', 'r')
|
column_align <- c('l', 'r', 'r', 'r', 'r', 'r')
|
||||||
} else {
|
} else {
|
||||||
df <- tibble::tibble(Item = x) %>%
|
df <- tibble::tibble(Item = x) %>%
|
||||||
group_by(Item)
|
group_by(Item)
|
||||||
column_names <- c('Item', 'Count', 'Percent', 'Cum. Count', 'Cum. Percent')
|
column_names <- column_names[1:5] # strip factor lvl
|
||||||
|
column_names_df <- column_names_df[1:5] # strip factor lvl
|
||||||
column_align <- c(x_align, 'r', 'r', 'r', 'r')
|
column_align <- c(x_align, 'r', 'r', 'r', 'r')
|
||||||
}
|
}
|
||||||
df <- df %>%
|
df <- df %>%
|
||||||
@ -276,10 +284,10 @@ freq <- function(x,
|
|||||||
|
|
||||||
# sort according to setting
|
# sort according to setting
|
||||||
if (sort.count == TRUE) {
|
if (sort.count == TRUE) {
|
||||||
df <- df %>% arrange(desc(Count))
|
df <- df %>% arrange(desc(Count), Item)
|
||||||
} else {
|
} else {
|
||||||
if (any(class(x) == 'factor')) {
|
if (any(class(x) == 'factor')) {
|
||||||
df <- df %>% arrange(Fctlvl)
|
df <- df %>% arrange(Fctlvl, Item)
|
||||||
} else {
|
} else {
|
||||||
df <- df %>% arrange(Item)
|
df <- df %>% arrange(Item)
|
||||||
}
|
}
|
||||||
@ -295,21 +303,21 @@ freq <- function(x,
|
|||||||
df <- df %>% select(Item, Count, Percent, Cum, CumTot, Fctlvl)
|
df <- df %>% select(Item, Count, Percent, Cum, CumTot, Fctlvl)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (as.data.frame == TRUE) {
|
||||||
|
# assign to object
|
||||||
|
df[, 3] <- df[, 2] / sum(df[, 2], na.rm = TRUE)
|
||||||
|
df[, 4] <- cumsum(df[, 2])
|
||||||
|
df[, 5] <- df[, 4] / sum(df[, 2], na.rm = TRUE)
|
||||||
|
colnames(df) <- column_names_df
|
||||||
|
return(as.data.frame(df, stringsAsFactors = FALSE))
|
||||||
|
}
|
||||||
|
|
||||||
if (markdown == TRUE) {
|
if (markdown == TRUE) {
|
||||||
tblformat <- 'markdown'
|
tblformat <- 'markdown'
|
||||||
} else {
|
} else {
|
||||||
tblformat <- 'pandoc'
|
tblformat <- 'pandoc'
|
||||||
}
|
}
|
||||||
|
|
||||||
if (toConsole == FALSE) {
|
|
||||||
# assign to object
|
|
||||||
df[, 3] <- df[, 2] / sum(df[, 2], na.rm = TRUE)
|
|
||||||
df[, 4] <- cumsum(df[, 2])
|
|
||||||
df[, 5] <- df[, 4] / sum(df[, 2], na.rm = TRUE)
|
|
||||||
return(df)
|
|
||||||
|
|
||||||
} else {
|
|
||||||
|
|
||||||
# save old NA setting for kable
|
# save old NA setting for kable
|
||||||
opt.old <- options()$knitr.kable.NA
|
opt.old <- options()$knitr.kable.NA
|
||||||
options(knitr.kable.NA = "<NA>")
|
options(knitr.kable.NA = "<NA>")
|
||||||
@ -337,7 +345,11 @@ freq <- function(x,
|
|||||||
'; ',
|
'; ',
|
||||||
(Count.rest / length(x)) %>% percent(force_zero = TRUE),
|
(Count.rest / length(x)) %>% percent(force_zero = TRUE),
|
||||||
')'),
|
')'),
|
||||||
'. Use `nmax` to show more rows.\n', sep = '')
|
'.', sep = '')
|
||||||
|
if (nmax.set == FALSE) {
|
||||||
|
cat(' Use `nmax` to show more or less rows.')
|
||||||
|
}
|
||||||
|
cat('\n')
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
print(
|
print(
|
||||||
@ -353,7 +365,6 @@ freq <- function(x,
|
|||||||
# reset old kable setting
|
# reset old kable setting
|
||||||
options(knitr.kable.NA = opt.old)
|
options(knitr.kable.NA = opt.old)
|
||||||
return(invisible())
|
return(invisible())
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#' @rdname freq
|
#' @rdname freq
|
||||||
|
@ -3,7 +3,7 @@
|
|||||||
|
|
||||||
[![logo_rug](man/figures/logo_rug.png)](https://www.rug.nl)[![logo_umcg](man/figures/logo_umcg.png)](https://www.umcg.nl)
|
[![logo_rug](man/figures/logo_rug.png)](https://www.rug.nl)[![logo_umcg](man/figures/logo_umcg.png)](https://www.umcg.nl)
|
||||||
|
|
||||||
This R package was created for academic research by PhD students of the Faculty of Medical Sciences of the [University of Groningen)](https://www.rug.nl) and the Medical Microbiology & Infection Prevention (MMBI) department of the [University Medical Center Groningen (UMCG)](https://www.umcg.nl). See [Authors](#authors).
|
This R package was created for academic research by PhD students of the Faculty of Medical Sciences of the [University of Groningen](https://www.rug.nl) and the Medical Microbiology & Infection Prevention (MMBI) department of the [University Medical Center Groningen (UMCG)](https://www.umcg.nl). See [Authors](#authors).
|
||||||
|
|
||||||
## Why this package?
|
## Why this package?
|
||||||
This R package contains functions to make **microbiological, epidemiological data analysis easier**. It allows the use of some new classes to work with MIC values and antimicrobial interpretations (i.e. values S, I and R).
|
This R package contains functions to make **microbiological, epidemiological data analysis easier**. It allows the use of some new classes to work with MIC values and antimicrobial interpretations (i.e. values S, I and R).
|
||||||
|
Binary file not shown.
20
man/freq.Rd
20
man/freq.Rd
@ -5,24 +5,26 @@
|
|||||||
\alias{frequency_tbl}
|
\alias{frequency_tbl}
|
||||||
\title{Frequency table}
|
\title{Frequency table}
|
||||||
\usage{
|
\usage{
|
||||||
freq(x, sort.count = TRUE, nmax = 15, na.rm = TRUE, markdown = FALSE,
|
freq(x, sort.count = TRUE, nmax = getOption("max.print.freq"),
|
||||||
toConsole = TRUE, digits = 2, sep = " ")
|
na.rm = TRUE, markdown = FALSE, as.data.frame = FALSE, digits = 2,
|
||||||
|
sep = " ")
|
||||||
|
|
||||||
frequency_tbl(x, sort.count = TRUE, nmax = 15, na.rm = TRUE,
|
frequency_tbl(x, sort.count = TRUE, nmax = getOption("max.print.freq"),
|
||||||
markdown = FALSE, toConsole = TRUE, digits = 2, sep = " ")
|
na.rm = TRUE, markdown = FALSE, as.data.frame = FALSE, digits = 2,
|
||||||
|
sep = " ")
|
||||||
}
|
}
|
||||||
\arguments{
|
\arguments{
|
||||||
\item{x}{data}
|
\item{x}{data}
|
||||||
|
|
||||||
\item{sort.count}{Sort on count. Use \code{FALSE} to sort alphabetically on item.}
|
\item{sort.count}{Sort on count. Use \code{FALSE} to sort alphabetically on item.}
|
||||||
|
|
||||||
\item{nmax}{number of row to print. Use \code{nmax = 0} or \code{nmax = NA} to print all rows.}
|
\item{nmax}{number of row to print. The default, \code{15}, uses \code{\link[base]{getOption}("max.print.freq")}. Use \code{nmax = 0} or \code{nmax = NA} to print all rows.}
|
||||||
|
|
||||||
\item{na.rm}{a logical value indicating whether NA values should be removed from the frequency table. The header will always print the amount of\code{NA}s.}
|
\item{na.rm}{a logical value indicating whether NA values should be removed from the frequency table. The header will always print the amount of \code{NA}s.}
|
||||||
|
|
||||||
\item{markdown}{print table in markdown format (this forces \code{nmax = NA})}
|
\item{markdown}{print table in markdown format (this forces \code{nmax = NA})}
|
||||||
|
|
||||||
\item{toConsole}{Print table to the console. Use \code{FALSE} to assign the table to an object.}
|
\item{as.data.frame}{return frequency table without header as a \code{data.frame} (e.g. to assign the table to an object)}
|
||||||
|
|
||||||
\item{digits}{how many significant digits are to be used for numeric values (not for the items themselves, that depends on \code{\link{getOption}("digits")})}
|
\item{digits}{how many significant digits are to be used for numeric values (not for the items themselves, that depends on \code{\link{getOption}("digits")})}
|
||||||
|
|
||||||
@ -37,7 +39,7 @@ For numeric values, the next values will be calculated and shown into the header
|
|||||||
\item{Mean, using \code{\link[base]{mean}}}
|
\item{Mean, using \code{\link[base]{mean}}}
|
||||||
\item{Standard deviation, using \code{\link[stats]{sd}}}
|
\item{Standard deviation, using \code{\link[stats]{sd}}}
|
||||||
\item{Five numbers of Tukey (min, Q1, median, Q3, max), using \code{\link[stats]{fivenum}}}
|
\item{Five numbers of Tukey (min, Q1, median, Q3, max), using \code{\link[stats]{fivenum}}}
|
||||||
\item{Outliers (count and list), using \code{\link{boxplot.stats}}}
|
\item{Outliers (total count and unique count), using \code{\link{boxplot.stats}}}
|
||||||
\item{Coefficient of variation (CV), the standard deviation divided by the mean}
|
\item{Coefficient of variation (CV), the standard deviation divided by the mean}
|
||||||
\item{Coefficient of quartile variation (CQV, sometimes called coefficient of dispersion), calculated as \code{(Q3 - Q1) / (Q3 + Q1)} using \code{\link{quantile}} with \code{type = 6} as quantile algorithm to comply with SPSS standards}
|
\item{Coefficient of quartile variation (CQV, sometimes called coefficient of dispersion), calculated as \code{(Q3 - Q1) / (Q3 + Q1)} using \code{\link{quantile}} with \code{type = 6} as quantile algorithm to comply with SPSS standards}
|
||||||
}
|
}
|
||||||
@ -63,7 +65,7 @@ septic_patients \%>\%
|
|||||||
years <- septic_patients \%>\%
|
years <- septic_patients \%>\%
|
||||||
mutate(year = format(date, "\%Y")) \%>\%
|
mutate(year = format(date, "\%Y")) \%>\%
|
||||||
select(year) \%>\%
|
select(year) \%>\%
|
||||||
freq(toConsole = FALSE)
|
freq(as.data.frame = TRUE)
|
||||||
}
|
}
|
||||||
\keyword{freq}
|
\keyword{freq}
|
||||||
\keyword{frequency}
|
\keyword{frequency}
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
context("eucast.R")
|
context("eucast.R")
|
||||||
|
|
||||||
test_that("EUCAST rules work", {
|
test_that("EUCAST rules work", {
|
||||||
a <- EUCAST_rules(septic_patients)
|
a <- suppressWarnings(EUCAST_rules(septic_patients))
|
||||||
|
|
||||||
a <- data.frame(bactid = c("KLEPNE", # Klebsiella pneumoniae
|
a <- data.frame(bactid = c("KLEPNE", # Klebsiella pneumoniae
|
||||||
"PSEAER", # Pseudomonas aeruginosa
|
"PSEAER", # Pseudomonas aeruginosa
|
||||||
|
@ -1,12 +1,12 @@
|
|||||||
context("freq.R")
|
context("freq.R")
|
||||||
|
|
||||||
test_that("frequency table works", {
|
test_that("frequency table works", {
|
||||||
expect_equal(nrow(freq(c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5), toConsole = FALSE)), 5)
|
expect_equal(nrow(freq(c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5), as.data.frame = TRUE)), 5)
|
||||||
expect_equal(nrow(frequency_tbl(c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5), toConsole = FALSE)), 5)
|
expect_equal(nrow(frequency_tbl(c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5), as.data.frame = TRUE)), 5)
|
||||||
|
|
||||||
# date column of septic_patients should contain 1662 unique dates
|
# date column of septic_patients should contain 1662 unique dates
|
||||||
expect_equal(nrow(freq(septic_patients$date, toConsole = FALSE)), 1662)
|
expect_equal(nrow(freq(septic_patients$date, as.data.frame = TRUE)), 1662)
|
||||||
expect_equal(nrow(freq(septic_patients$date, toConsole = FALSE)),
|
expect_equal(nrow(freq(septic_patients$date, as.data.frame = TRUE)),
|
||||||
length(unique(septic_patients$date)))
|
length(unique(septic_patients$date)))
|
||||||
|
|
||||||
expect_output(freq(septic_patients$age))
|
expect_output(freq(septic_patients$age))
|
||||||
|
@ -13,7 +13,7 @@ test_that("MDRO works", {
|
|||||||
expect_equal(outcome %>% class(), c('ordered', 'factor'))
|
expect_equal(outcome %>% class(), c('ordered', 'factor'))
|
||||||
|
|
||||||
# septic_patients should have these finding using Dutch guidelines
|
# septic_patients should have these finding using Dutch guidelines
|
||||||
expect_equal(outcome %>% freq(toConsole = FALSE) %>% pull(Count), c(3, 21))
|
expect_equal(outcome %>% freq(as.data.frame = TRUE) %>% pull(count), c(3, 21))
|
||||||
|
|
||||||
expect_equal(BRMO(septic_patients, info = FALSE), MDRO(septic_patients, "nl", info = FALSE))
|
expect_equal(BRMO(septic_patients, info = FALSE), MDRO(septic_patients, "nl", info = FALSE))
|
||||||
|
|
||||||
|
91
vignettes/freq.R
Normal file
91
vignettes/freq.R
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
## ----setup, include = FALSE, results = 'markup'--------------------------
|
||||||
|
knitr::opts_chunk$set(
|
||||||
|
collapse = TRUE,
|
||||||
|
comment = "#"
|
||||||
|
)
|
||||||
|
library(dplyr)
|
||||||
|
library(AMR)
|
||||||
|
|
||||||
|
## ---- echo = TRUE, results = 'hide'--------------------------------------
|
||||||
|
# # just using base R
|
||||||
|
freq(septic_patients$sex)
|
||||||
|
|
||||||
|
# # using base R to select the variable and pass it on with a pipe
|
||||||
|
septic_patients$sex %>% freq()
|
||||||
|
|
||||||
|
# # do it all with pipes, using the `select` function of the dplyr package
|
||||||
|
septic_patients %>%
|
||||||
|
select(sex) %>%
|
||||||
|
freq()
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
freq(septic_patients$sex)
|
||||||
|
|
||||||
|
## ---- echo = TRUE, results = 'hide'--------------------------------------
|
||||||
|
my_patients <- septic_patients %>%
|
||||||
|
left_join_microorganisms()
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
colnames(microorganisms)
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
dim(septic_patients)
|
||||||
|
dim(my_patients)
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
my_patients %>%
|
||||||
|
select(genus, species) %>%
|
||||||
|
freq()
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
# # get age distribution of unique patients
|
||||||
|
septic_patients %>%
|
||||||
|
distinct(patient_id, .keep_all = TRUE) %>%
|
||||||
|
select(age) %>%
|
||||||
|
freq(nmax = 5)
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
septic_patients %>%
|
||||||
|
select(hospital_id) %>%
|
||||||
|
freq()
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
septic_patients %>%
|
||||||
|
select(hospital_id) %>%
|
||||||
|
freq(sort.count = TRUE)
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
septic_patients %>%
|
||||||
|
select(amox) %>%
|
||||||
|
freq()
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
septic_patients %>%
|
||||||
|
select(date) %>%
|
||||||
|
freq(nmax = 5)
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
septic_patients %>%
|
||||||
|
select(amox) %>%
|
||||||
|
freq(na.rm = FALSE)
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
septic_patients %>%
|
||||||
|
select(hospital_id) %>%
|
||||||
|
freq(markdown = TRUE)
|
||||||
|
|
||||||
|
## ---- echo = TRUE--------------------------------------------------------
|
||||||
|
my_df <- septic_patients %>%
|
||||||
|
select(hospital_id) %>%
|
||||||
|
freq(as.data.frame = TRUE)
|
||||||
|
|
||||||
|
my_df
|
||||||
|
|
||||||
|
class(my_df)
|
||||||
|
|
||||||
|
## ---- echo = FALSE-------------------------------------------------------
|
||||||
|
# this will print "2018" in 2018, and "2018-yyyy" after 2018.
|
||||||
|
yrs <- c(2018:format(Sys.Date(), "%Y"))
|
||||||
|
yrs <- c(min(yrs), max(yrs))
|
||||||
|
yrs <- paste(unique(yrs), collapse = "-")
|
||||||
|
|
183
vignettes/freq.Rmd
Normal file
183
vignettes/freq.Rmd
Normal file
@ -0,0 +1,183 @@
|
|||||||
|
---
|
||||||
|
title: "Creating Frequency Tables"
|
||||||
|
author: "Matthijs S. Berends"
|
||||||
|
output:
|
||||||
|
rmarkdown::html_vignette:
|
||||||
|
toc: true
|
||||||
|
vignette: >
|
||||||
|
%\VignetteIndexEntry{Vignette Title}
|
||||||
|
%\VignetteEngine{knitr::rmarkdown}
|
||||||
|
%\VignetteEncoding{UTF-8}
|
||||||
|
---
|
||||||
|
|
||||||
|
```{r setup, include = FALSE, results = 'markup'}
|
||||||
|
knitr::opts_chunk$set(
|
||||||
|
collapse = TRUE,
|
||||||
|
comment = "#"
|
||||||
|
)
|
||||||
|
library(dplyr)
|
||||||
|
library(AMR)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Introduction
|
||||||
|
|
||||||
|
Frequency tables (or frequency distributions) are summaries of the distribution of values in a sample. With the `freq` function, you can create univariate frequency tables. Multiple variables will be pasted into one variable, so it forces a univariate distribution. We take the `septic_patients` dataset (included in this AMR package) as example.
|
||||||
|
|
||||||
|
## Frequencies of one variable
|
||||||
|
|
||||||
|
To only show and quickly review the content of one variable, you can just select this variable in various ways. Let's say we want to get the frequencies of the `sex` variable of the `septic_patients` dataset:
|
||||||
|
```{r, echo = TRUE, results = 'hide'}
|
||||||
|
# # just using base R
|
||||||
|
freq(septic_patients$sex)
|
||||||
|
|
||||||
|
# # using base R to select the variable and pass it on with a pipe
|
||||||
|
septic_patients$sex %>% freq()
|
||||||
|
|
||||||
|
# # do it all with pipes, using the `select` function of the dplyr package
|
||||||
|
septic_patients %>%
|
||||||
|
select(sex) %>%
|
||||||
|
freq()
|
||||||
|
```
|
||||||
|
This will all lead to the following table:
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
freq(septic_patients$sex)
|
||||||
|
```
|
||||||
|
This immediately shows the class of the variable, its length and availability (i.e. the amount of `NA`), the amount of unique values and (most importantly) that among septic patients men are more prevalent than women.
|
||||||
|
|
||||||
|
## Frequencies of more than one variable
|
||||||
|
|
||||||
|
Multiple variables will be pasted into one variable to review individual cases, keeping a univariate frequency table.
|
||||||
|
|
||||||
|
For illustration, we could add some more variables to the `septic_patients` dataset to learn about bacterial properties:
|
||||||
|
```{r, echo = TRUE, results = 'hide'}
|
||||||
|
my_patients <- septic_patients %>%
|
||||||
|
left_join_microorganisms()
|
||||||
|
```
|
||||||
|
Now all variables of the `microorganisms` dataset have been joined to the `septic_patients` dataset. The `microorganisms` dataset consists of the following variables:
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
colnames(microorganisms)
|
||||||
|
```
|
||||||
|
|
||||||
|
If we compare the dimensions between the old and new dataset, we can see that these `r ncol(my_patients) - ncol(septic_patients)` variables were added:
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
dim(septic_patients)
|
||||||
|
dim(my_patients)
|
||||||
|
```
|
||||||
|
|
||||||
|
So now the `genus` and `species` variables are available. A frequency table of these combined variables can be created like this:
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
my_patients %>%
|
||||||
|
select(genus, species) %>%
|
||||||
|
freq()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Frequencies of numeric values
|
||||||
|
|
||||||
|
Frequency tables can be created of any input.
|
||||||
|
|
||||||
|
In case of numeric values (like integers, doubles, etc.) additional descriptive statistics will be calculated and shown into the header:
|
||||||
|
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
# # get age distribution of unique patients
|
||||||
|
septic_patients %>%
|
||||||
|
distinct(patient_id, .keep_all = TRUE) %>%
|
||||||
|
select(age) %>%
|
||||||
|
freq(nmax = 5)
|
||||||
|
```
|
||||||
|
|
||||||
|
So the following properties are determined, where `NA` values are always ignored:
|
||||||
|
|
||||||
|
* **Mean**
|
||||||
|
|
||||||
|
* **Standard deviation**
|
||||||
|
|
||||||
|
* **Coefficient of variation** (CV), the standard deviation divided by the mean
|
||||||
|
|
||||||
|
* **Five numbers of Tukey** (min, Q1, median, Q3, max)
|
||||||
|
|
||||||
|
* **Coefficient of quartile variation** (CQV, sometimes called coefficient of dispersion), calculated as (Q3 - Q1) / (Q3 + Q1) using quantile with `type = 6` as quantile algorithm to comply with SPSS standards
|
||||||
|
|
||||||
|
* **Outliers** (total count and unique count)
|
||||||
|
|
||||||
|
So for example, the above frequency table quickly shows the median age of patients being `r my_patients %>% distinct(patient_id, .keep_all = TRUE) %>% pull(age) %>% median(na.rm = TRUE)`.
|
||||||
|
|
||||||
|
## Frequencies of factors
|
||||||
|
|
||||||
|
Frequencies of factors will be sorted on factor level instead of item count by default. This can be changed with the `sort.count` parameter. Frequency tables of factors always show the factor level as an additional last column.
|
||||||
|
|
||||||
|
`sort.count` is `TRUE` by default, except for factors. Compare this default behaviour:
|
||||||
|
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
septic_patients %>%
|
||||||
|
select(hospital_id) %>%
|
||||||
|
freq()
|
||||||
|
```
|
||||||
|
|
||||||
|
To this, where items are now sorted on item count:
|
||||||
|
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
septic_patients %>%
|
||||||
|
select(hospital_id) %>%
|
||||||
|
freq(sort.count = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
All classes will be printed into the header. Variables with the new `rsi` class of this AMR package are actually ordered factors and have three classes (look at `Class` in the header):
|
||||||
|
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
septic_patients %>%
|
||||||
|
select(amox) %>%
|
||||||
|
freq()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Frequencies of dates
|
||||||
|
|
||||||
|
Frequencies of dates will show the oldest and newest date in the data, and the amount of days between them:
|
||||||
|
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
septic_patients %>%
|
||||||
|
select(date) %>%
|
||||||
|
freq(nmax = 5)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Additional parameters
|
||||||
|
|
||||||
|
### Parameter `na.rm`
|
||||||
|
With the `na.rm` parameter (defaults to `TRUE`, but they will always be shown into the header), you can include `NA` values in the frequency table:
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
septic_patients %>%
|
||||||
|
select(amox) %>%
|
||||||
|
freq(na.rm = FALSE)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Parameter `markdown`
|
||||||
|
The `markdown` parameter can be used in reports created with R Markdown. This will always print all rows:
|
||||||
|
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
septic_patients %>%
|
||||||
|
select(hospital_id) %>%
|
||||||
|
freq(markdown = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Parameter `as.data.frame`
|
||||||
|
With the `as.data.frame` parameter you can assign the frequency table to an object, or just print it as a `data.frame` to the console:
|
||||||
|
|
||||||
|
```{r, echo = TRUE}
|
||||||
|
my_df <- septic_patients %>%
|
||||||
|
select(hospital_id) %>%
|
||||||
|
freq(as.data.frame = TRUE)
|
||||||
|
|
||||||
|
my_df
|
||||||
|
|
||||||
|
class(my_df)
|
||||||
|
```
|
||||||
|
|
||||||
|
----
|
||||||
|
```{r, echo = FALSE}
|
||||||
|
# this will print "2018" in 2018, and "2018-yyyy" after 2018.
|
||||||
|
yrs <- c(2018:format(Sys.Date(), "%Y"))
|
||||||
|
yrs <- c(min(yrs), max(yrs))
|
||||||
|
yrs <- paste(unique(yrs), collapse = "-")
|
||||||
|
```
|
||||||
|
AMR, (c) `r yrs`, `r packageDescription("AMR")$URL`
|
||||||
|
|
||||||
|
Licensed under the [GNU General Public License v2.0](https://github.com/msberends/AMR/blob/master/LICENSE).
|
344
vignettes/freq.html
Normal file
344
vignettes/freq.html
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user