As per the EUCAST guideline of 2019, we calculate resistance as the proportion of R (proportion_R(), equal to resistance()) and susceptibility as the proportion of S and I (proportion_SI(), equal to susceptibility()). These functions can be used on their own:
# base R:plot(disk_values, mo ="E. coli", ab ="cipro")
diff --git a/articles/AMR_files/figure-html/disk_plots-1.png b/articles/AMR_files/figure-html/disk_plots-1.png
index 13da955b..08ae7153 100644
Binary files a/articles/AMR_files/figure-html/disk_plots-1.png and b/articles/AMR_files/figure-html/disk_plots-1.png differ
diff --git a/articles/AMR_files/figure-html/disk_plots_mo_ab-1.png b/articles/AMR_files/figure-html/disk_plots_mo_ab-1.png
index 3ab03a37..769c4f8c 100644
Binary files a/articles/AMR_files/figure-html/disk_plots_mo_ab-1.png and b/articles/AMR_files/figure-html/disk_plots_mo_ab-1.png differ
diff --git a/articles/AMR_files/figure-html/mic_plots-1.png b/articles/AMR_files/figure-html/mic_plots-1.png
index a97e795f..46e4301b 100644
Binary files a/articles/AMR_files/figure-html/mic_plots-1.png and b/articles/AMR_files/figure-html/mic_plots-1.png differ
diff --git a/articles/AMR_files/figure-html/mic_plots-2.png b/articles/AMR_files/figure-html/mic_plots-2.png
index 2eb7add5..893a6cd1 100644
Binary files a/articles/AMR_files/figure-html/mic_plots-2.png and b/articles/AMR_files/figure-html/mic_plots-2.png differ
diff --git a/articles/AMR_files/figure-html/mic_plots_mo_ab-1.png b/articles/AMR_files/figure-html/mic_plots_mo_ab-1.png
index d804838a..4d7e86c5 100644
Binary files a/articles/AMR_files/figure-html/mic_plots_mo_ab-1.png and b/articles/AMR_files/figure-html/mic_plots_mo_ab-1.png differ
diff --git a/articles/AMR_files/figure-html/mic_plots_mo_ab-2.png b/articles/AMR_files/figure-html/mic_plots_mo_ab-2.png
index fcf57c45..caa1b9c9 100644
Binary files a/articles/AMR_files/figure-html/mic_plots_mo_ab-2.png and b/articles/AMR_files/figure-html/mic_plots_mo_ab-2.png differ
diff --git a/articles/AMR_files/figure-html/plot 1-1.png b/articles/AMR_files/figure-html/plot 1-1.png
index c6202307..eca09e39 100644
Binary files a/articles/AMR_files/figure-html/plot 1-1.png and b/articles/AMR_files/figure-html/plot 1-1.png differ
diff --git a/articles/AMR_files/figure-html/plot 3-1.png b/articles/AMR_files/figure-html/plot 3-1.png
index 58701d94..18bf114a 100644
Binary files a/articles/AMR_files/figure-html/plot 3-1.png and b/articles/AMR_files/figure-html/plot 3-1.png differ
diff --git a/articles/AMR_files/figure-html/plot 4-1.png b/articles/AMR_files/figure-html/plot 4-1.png
index 0b9bd78d..4ee32382 100644
Binary files a/articles/AMR_files/figure-html/plot 4-1.png and b/articles/AMR_files/figure-html/plot 4-1.png differ
diff --git a/articles/AMR_files/figure-html/plot 5-1.png b/articles/AMR_files/figure-html/plot 5-1.png
index e33d091c..1d00947c 100644
Binary files a/articles/AMR_files/figure-html/plot 5-1.png and b/articles/AMR_files/figure-html/plot 5-1.png differ
diff --git a/articles/EUCAST.html b/articles/EUCAST.html
index abd2c8d4..8297fa9a 100644
--- a/articles/EUCAST.html
+++ b/articles/EUCAST.html
@@ -38,7 +38,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -111,11 +111,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/articles/MDR.html b/articles/MDR.html
index dafc67cd..91e95269 100644
--- a/articles/MDR.html
+++ b/articles/MDR.html
@@ -38,7 +38,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -111,11 +111,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -313,19 +308,19 @@ Unique: 2
head(my_TB_data)# rifampicin isoniazid gatifloxacin ethambutol pyrazinamide moxifloxacin
-# 1 S S R I R I
-# 2 I R S S S S
-# 3 I R S I S S
-# 4 R I S I S R
-# 5 I I S R S R
-# 6 S I S S R R
+# 1 R S I R I I
+# 2 S R R S R S
+# 3 R R S R S S
+# 4 I R S R I I
+# 5 S R S I S I
+# 6 R S R R S R# kanamycin
-# 1 S
+# 1 R# 2 S# 3 I# 4 R# 5 I
-# 6 S
+# 6 R
We can now add the interpretation of MDR-TB to our data set. You can use:
EUCAST 2022 and CLSI 2022 guidelines have been added for as.rsi(). EUCAST 2022 is now the new default guideline for all MIC and disks diffusion interpretations.
-
Support for the following languages: Chinese, Greek, Japanese, Polish, Turkish and Ukrainian. The AMR package is now available in 16 languages.
-
-
-
Changed
-
Fix for as.rsi() on certain EUCAST breakpoints for MIC values
-
Removed as.integer() for MIC values, since MIC are not integer values and running table() on MIC values consequently failed for not being able to retrieve the level position (as that’s how normally as.integer() on factors work)
-
-droplevels() on MIC will now return a common factor at default and will lose the <mic> class. Use droplevels(..., as.mic = TRUE) to keep the <mic> class.
Fixes for reading in text files using set_mo_source(), which now also allows the source file to contain valid taxonomic names instead of only valid microorganism ID of this package
-
Using any random_*() function (such as random_mic()) is now possible by directly calling the package without loading it first: AMR::random_mic(10)
-
-
Added Toxoplasma gondii (P_TXPL_GOND) to the microorganisms data set, together with its genus, family, and order
-
Changed value in column prevalence of the microorganisms data set from 3 to 2 for these genera: Acholeplasma, Alistipes, Alloprevotella, Bergeyella, Borrelia, Brachyspira, Butyricimonas, Cetobacterium, Chlamydia, Chlamydophila, Deinococcus, Dysgonomonas, Elizabethkingia, Empedobacter, Haloarcula, Halobacterium, Halococcus, Myroides, Odoribacter, Ornithobacterium, Parabacteroides, Pedobacter, Phocaeicola, Porphyromonas, Riemerella, Sphingobacterium, Streptobacillus, Tenacibaculum, Terrimonas, Victivallis, Wautersiella, Weeksella
-
-
Fix for using the form df[carbapenems() == "R", ] using the latest vctrs package
New website to make use of the new Bootstrap 5 and pkgdown v2.0. The website now contains results for all examples and will be automatically regenerated with every change to our repository, using GitHub Actions
-
Added Peter Dutey-Magni and Anton Mymrikov as contributors, to thank them for their valuable input
diff --git a/reference/antibiotic_class_selectors.html b/reference/antibiotic_class_selectors.html
index 0129b1ea..31597c21 100644
--- a/reference/antibiotic_class_selectors.html
+++ b/reference/antibiotic_class_selectors.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -315,7 +310,6 @@
#> 9 NA NA #>10 NA NA #># … with 1,990 more rows
-#># ℹ Use `print(n = ...)` to see more rows# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB'df[, c("mo", aminoglycosides())]
@@ -335,7 +329,6 @@
#> 9 B_STPHY_EPDR NA NA #>10 B_STPHY_EPDR NA NA #># … with 1,990 more rows
-#># ℹ Use `print(n = ...)` to see more rows# select only antibiotic columns with DDDs for oral treatmentdf[, administrable_per_os()]
@@ -356,7 +349,6 @@
#> 9 NA NA R R S #>10 NA NA S R S #># … with 1,990 more rows
-#># ℹ Use `print(n = ...)` to see more rows# filter using any() or all()df[any(carbapenems()=="R"), ]
@@ -376,7 +368,6 @@
#>10 A B_PROTS_MRBL NA S S S S S S R R #># … with 45 more rows, 3 more variables: MEM <rsi>, TEC <rsi>, VAN <rsi>, and#># abbreviated variable name ¹hospital_id
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable namessubset(df, any(carbapenems()=="R"))#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#># A tibble: 55 × 14
@@ -394,7 +385,6 @@
#>10 A B_PROTS_MRBL NA S S S S S S R R #># … with 45 more rows, 3 more variables: MEM <rsi>, TEC <rsi>, VAN <rsi>, and#># abbreviated variable name ¹hospital_id
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names# filter on any or all results in the carbapenem columns (i.e., IPM, MEM):df[any(carbapenems()), ]
@@ -415,7 +405,6 @@
#>10 C B_ESCHR_COLI R R NA R S S NA NA S #># … with 952 more rows, 3 more variables: MEM <rsi>, TEC <rsi>, VAN <rsi>, and#># abbreviated variable name ¹hospital_id
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable namesdf[all(carbapenems()), ]#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)#> ℹ Filtering all of columns 'IPM' and 'MEM' to contain value "R", "S" or "I"
@@ -434,7 +423,6 @@
#>10 B B_ESCHR_COLI NA S S S S S S NA S #># … with 746 more rows, 3 more variables: MEM <rsi>, TEC <rsi>, VAN <rsi>, and#># abbreviated variable name ¹hospital_id
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names# filter with multiple antibiotic selectors using c()df[all(c(carbapenems(), aminoglycosides())=="R"), ]
@@ -456,7 +444,6 @@
#>10 D B_STPHY_CONS R R R R R R R R R #># … with 16 more rows, 3 more variables: MEM <rsi>, TEC <rsi>, VAN <rsi>, and#># abbreviated variable name ¹hospital_id
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names# filter + select in one go: get penicillins in carbapenems-resistant strainsdf[any(carbapenems()=="R"), penicillins()]
@@ -477,7 +464,6 @@
#> 9 NA S S #>10 NA S S #># … with 45 more rows
-#># ℹ Use `print(n = ...)` to see more rows# You can combine selectors with '&' to be more specific. For example,# penicillins() would select benzylpenicillin ('peni G') and
@@ -504,7 +490,6 @@
#> 9 NA NA #>10 NA NA #># … with 1,990 more rows
-#># ℹ Use `print(n = ...)` to see more rows# ab_selector() applies a filter in the `antibiotics` data set and is thus very# flexible. For instance, to select antibiotic columns with an oral DDD of at
@@ -526,7 +511,6 @@
#> 9 NA NA S #>10 NA NA S #># … with 1,990 more rows
-#># ℹ Use `print(n = ...)` to see more rows# dplyr -------------------------------------------------------------------# \donttest{
diff --git a/reference/antibiotics.html b/reference/antibiotics.html
index f7155ac0..caf52bec 100644
--- a/reference/antibiotics.html
+++ b/reference/antibiotics.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/as.ab.html b/reference/as.ab.html
index 62fe1134..1e7d2fbb 100644
--- a/reference/as.ab.html
+++ b/reference/as.ab.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -290,7 +285,6 @@ This package contains all ~550 antibiotic, antimycotic and antiviral dru
#># FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>,#># TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>,#># IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, …
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names# }
diff --git a/reference/as.disk.html b/reference/as.disk.html
index a4c8ca26..4edbd701 100644
--- a/reference/as.disk.html
+++ b/reference/as.disk.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/as.mic.html b/reference/as.mic.html
index 5c50ce7d..bd4df6e3 100644
--- a/reference/as.mic.html
+++ b/reference/as.mic.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/as.mo.html b/reference/as.mo.html
index 9a04ebae..da8f6d77 100644
--- a/reference/as.mo.html
+++ b/reference/as.mo.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/as.rsi.html b/reference/as.rsi.html
index 4af82025..900953e2 100644
--- a/reference/as.rsi.html
+++ b/reference/as.rsi.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -340,7 +335,6 @@ A microorganism is categorised as Susceptible, Increased exposure when
#># FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>,#># TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>,#># IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, …
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable namessummary(example_isolates)# see all R/SI results at a glance#> date hospital_id ward_icu ward_clinical #> Min. :2002-01-02 A:321 Mode :logical Mode :logical
@@ -736,7 +730,6 @@ A microorganism is categorised as Susceptible, Increased exposure when
#># FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>,#># TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>,#># IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, …
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names# }
diff --git a/reference/atc_online.html b/reference/atc_online.html
index 591c5bbd..97ad2708 100644
--- a/reference/atc_online.html
+++ b/reference/atc_online.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/availability.html b/reference/availability.html
index ac2dd5a3..057fcadc 100644
--- a/reference/availability.html
+++ b/reference/availability.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html
index b2b6bcc8..d1e353fa 100644
--- a/reference/bug_drug_combinations.html
+++ b/reference/bug_drug_combinations.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/catalogue_of_life.html b/reference/catalogue_of_life.html
index 65f9608a..0eb08d1d 100644
--- a/reference/catalogue_of_life.html
+++ b/reference/catalogue_of_life.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -168,7 +163,7 @@ Function as.mo() to use the data for intel
Examples
# Get version info of included data setcatalogue_of_life_version()
-#> Included in this AMR package (v1.8.1.9021) are:
+#> Included in this AMR package (v1.8.1.9026) are:#>#> Catalogue of Life: 2019 Annual Checklist#> Available at: http://www.catalogueoflife.org
diff --git a/reference/catalogue_of_life_version.html b/reference/catalogue_of_life_version.html
index 7ce979e9..aa1d1409 100644
--- a/reference/catalogue_of_life_version.html
+++ b/reference/catalogue_of_life_version.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/count.html b/reference/count.html
index fa66ed20..856f759d 100644
--- a/reference/count.html
+++ b/reference/count.html
@@ -12,7 +12,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -84,11 +84,6 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html
index 951692be..c48c1843 100644
--- a/reference/custom_eucast_rules.html
+++ b/reference/custom_eucast_rules.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/dosage.html b/reference/dosage.html
index 39644c6c..9bfd0163 100644
--- a/reference/dosage.html
+++ b/reference/dosage.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/eucast_rules.html b/reference/eucast_rules.html
index db922d91..bd35f63c 100644
--- a/reference/eucast_rules.html
+++ b/reference/eucast_rules.html
@@ -12,7 +12,7 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -84,11 +84,6 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/example_isolates.html b/reference/example_isolates.html
index 7bbde8c9..0c099a86 100644
--- a/reference/example_isolates.html
+++ b/reference/example_isolates.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -180,7 +175,6 @@
#># LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>, TCY <rsi>,#># TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>, IPM <rsi>,#># MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, RIF <rsi>, and …
-#># ℹ Use `colnames()` to see all variable names
diff --git a/reference/first_isolate.html b/reference/first_isolate.html
index c8e9658a..2aebef9a 100644
--- a/reference/first_isolate.html
+++ b/reference/first_isolate.html
@@ -12,7 +12,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -84,11 +84,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -349,7 +344,6 @@
#># FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>,#># TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>,#># IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, …
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names# \donttest{# get all first Gram-negativesexample_isolates[which(first_isolate(info =FALSE)&mo_is_gram_negative()), ]
@@ -374,7 +368,6 @@
#># FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>,#># TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>,#># IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, …
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable namesif(require("dplyr")){# filter on first isolates using dplyr:
diff --git a/reference/g.test.html b/reference/g.test.html
index bd06d1a9..2e2c24bb 100644
--- a/reference/g.test.html
+++ b/reference/g.test.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/get_episode.html b/reference/get_episode.html
index 659c5188..bb8b81bb 100644
--- a/reference/get_episode.html
+++ b/reference/get_episode.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -230,7 +225,6 @@
#># FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>,#># TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>,#># IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, …
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names# \donttest{# faster way, since mo_name() is context-aware:example_isolates[which(mo_name()%like%"^ent"), ]
@@ -255,7 +249,6 @@
#># FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>,#># TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>,#># IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, …
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable namesif(require("dplyr")){example_isolates%>%
@@ -282,7 +275,6 @@
#># FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>,#># TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>,#># IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, …
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names# }
diff --git a/reference/mdro.html b/reference/mdro.html
index 5c4cd627..996141e5 100644
--- a/reference/mdro.html
+++ b/reference/mdro.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/microorganisms.codes.html b/reference/microorganisms.codes.html
index f8ab97ec..9ee32e11 100644
--- a/reference/microorganisms.codes.html
+++ b/reference/microorganisms.codes.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/microorganisms.html b/reference/microorganisms.html
index ef4ee927..d0970502 100644
--- a/reference/microorganisms.html
+++ b/reference/microorganisms.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/microorganisms.old.html b/reference/microorganisms.old.html
index 01f0b228..b020a2d2 100644
--- a/reference/microorganisms.old.html
+++ b/reference/microorganisms.old.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/mo_matching_score.html b/reference/mo_matching_score.html
index 27ca07a9..96f80aa6 100644
--- a/reference/mo_matching_score.html
+++ b/reference/mo_matching_score.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/mo_property.html b/reference/mo_property.html
index e0563673..a1434bbc 100644
--- a/reference/mo_property.html
+++ b/reference/mo_property.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -470,7 +465,6 @@ This package contains the complete taxonomic tree of almost all microorganisms (
#># FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>,#># TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>,#># IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, …
-#># ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names# get a list with the complete taxonomy (from kingdom to subspecies)
diff --git a/reference/mo_source.html b/reference/mo_source.html
index 29ffac26..b8552426 100644
--- a/reference/mo_source.html
+++ b/reference/mo_source.html
@@ -12,7 +12,7 @@ This is the fastest way to have your organisation (or analysis) specific codes p
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -84,11 +84,6 @@ This is the fastest way to have your organisation (or analysis) specific codes p
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/pca.html b/reference/pca.html
index 5aa21ad5..667bb44a 100644
--- a/reference/pca.html
+++ b/reference/pca.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/plot-1.png b/reference/plot-1.png
index d71eff77..22281cb8 100644
Binary files a/reference/plot-1.png and b/reference/plot-1.png differ
diff --git a/reference/plot-2.png b/reference/plot-2.png
index f4737469..b7844907 100644
Binary files a/reference/plot-2.png and b/reference/plot-2.png differ
diff --git a/reference/plot-3.png b/reference/plot-3.png
index 827936dd..60db1e1c 100644
Binary files a/reference/plot-3.png and b/reference/plot-3.png differ
diff --git a/reference/plot-4.png b/reference/plot-4.png
index 2a8b61d4..66cafcab 100644
Binary files a/reference/plot-4.png and b/reference/plot-4.png differ
diff --git a/reference/plot-5.png b/reference/plot-5.png
index 8af20cff..725ed4d0 100644
Binary files a/reference/plot-5.png and b/reference/plot-5.png differ
diff --git a/reference/plot-6.png b/reference/plot-6.png
index 9daa6775..0311be7d 100644
Binary files a/reference/plot-6.png and b/reference/plot-6.png differ
diff --git a/reference/plot-7.png b/reference/plot-7.png
index 3ea1adb6..349379e6 100644
Binary files a/reference/plot-7.png and b/reference/plot-7.png differ
diff --git a/reference/plot.html b/reference/plot.html
index 4f80954f..821f3efe 100644
--- a/reference/plot.html
+++ b/reference/plot.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/proportion.html b/reference/proportion.html
index d9cba062..1383dfd7 100644
--- a/reference/proportion.html
+++ b/reference/proportion.html
@@ -12,7 +12,7 @@ resistance() should be used to calculate resistance, susceptibility() should be
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -84,11 +84,6 @@ resistance() should be used to calculate resistance, susceptibility() should be
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/random.html b/reference/random.html
index 4a4bbf11..925870a4 100644
--- a/reference/random.html
+++ b/reference/random.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -183,42 +178,43 @@
Examples
random_mic(25)#> Class <mic>
-#> [1] 8 64 8 0.25 8 2 0.005 16 256 32 16 0.125
-#> [13] 0.125 64 32 0.25 256 4 1 0.125 32 0.5 0.025 128
-#> [25] 0.25
+#> [1] <=0.001 1 0.25 128 0.01 0.025 0.025 16 8
+#> [10] 128 64 16 <=0.001 0.01 0.0625 0.0625 0.5 0.0625
+#> [19] 0.025 8 128 32 0.025 0.0625 0.01 random_disk(25)#> Class <disk>
-#> [1] 27 41 44 30 6 49 34 45 48 31 48 31 31 41 49 46 14 24 31 12 45 24 44 36 38
+#> [1] 30 11 11 41 49 41 47 7 44 29 15 18 25 6 30 49 24 38 15 23 15 17 43 45 6random_rsi(25)#> Class <rsi>
-#> [1] I I R S S R S S S I I R I R I I S R R R S I S I S
+#> [1] S I I S R R I I S R S I S R R R R I S I R I I S I# \donttest{# make the random generation more realistic by setting a bug and/or drug:random_mic(25, "Klebsiella pneumoniae")# range 0.0625-64#> Class <mic>
-#> [1] 0.125 0.25 0.125 0.002 4 2 8 32 0.0625 0.002
-#> [11] 0.125 0.005 1 0.002 0.001 16 0.025 0.25 0.5 128
-#> [21] 2 0.005 128 4 0.002
+#> [1] 0.01 0.025 8 2 1 0.002 0.125 2 64 0.25 16 32
+#> [13] 0.005 0.125 0.01 256 0.5 1 4 0.25 0.125 0.001 256 0.5
+#> [25] 128 random_mic(25, "Klebsiella pneumoniae", "meropenem")# range 0.0625-16#> Class <mic>
-#> [1] <=1 4 8 8 8 8 8 >=16 2 2 4 2 <=1 8 2
-#> [16] <=1 >=16 2 2 8 4 4 8 <=1 <=1
+#> [1] 0.5 >=64 2 4 8 0.5 >=64 2 1 32
+#> [11] >=64 16 8 <=0.25 <=0.25 4 <=0.25 16 16 <=0.25
+#> [21] 16 32 32 <=0.25 <=0.25random_mic(25, "Streptococcus pneumoniae", "meropenem")# range 0.0625-4#> Class <mic>
-#> [1] 0.125 0.25 2 0.5 0.0625 8 0.25 0.25 0.125 1
-#> [11] 2 0.125 0.0625 4 0.5 0.125 2 8 4 0.0625
-#> [21] 0.5 0.25 0.5 8 0.25
+#> [1] 0.25 1 >=8 <=0.125 0.25 4 0.5 >=8 >=8
+#> [10] 0.25 0.25 0.25 1 4 <=0.125 1 >=8 4
+#> [19] 4 0.5 2 >=8 >=8 >=8 0.25 random_disk(25, "Klebsiella pneumoniae")# range 8-50#> Class <disk>
-#> [1] 42 30 13 25 19 37 49 26 38 8 46 40 23 25 44 11 40 13 22 34 15 36 47 49 49
+#> [1] 19 46 14 40 42 13 26 42 12 21 41 26 21 12 24 27 40 21 45 37 24 13 41 17 41random_disk(25, "Klebsiella pneumoniae", "ampicillin")# range 11-17#> Class <disk>
-#> [1] 15 14 17 16 15 16 15 11 16 16 15 15 13 13 15 11 15 15 15 17 13 11 15 17 11
+#> [1] 17 16 17 11 13 14 13 17 17 16 17 12 17 11 16 11 13 15 13 11 16 12 14 16 13random_disk(25, "Streptococcus pneumoniae", "ampicillin")# range 12-27#> Class <disk>
-#> [1] 20 25 18 16 15 19 16 21 23 19 25 18 16 16 16 18 16 27 17 27 23 22 17 19 19
+#> [1] 22 17 19 18 25 20 18 23 18 15 23 20 24 23 21 20 18 21 18 21 23 15 18 25 22# }
diff --git a/reference/resistance_predict.html b/reference/resistance_predict.html
index fbfb5570..8eeab544 100644
--- a/reference/resistance_predict.html
+++ b/reference/resistance_predict.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/rsi_translation.html b/reference/rsi_translation.html
index a1f8197f..5665e383 100644
--- a/reference/rsi_translation.html
+++ b/reference/rsi_translation.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -82,11 +82,6 @@
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
diff --git a/reference/skewness.html b/reference/skewness.html
index b51dc52d..afb5eb04 100644
--- a/reference/skewness.html
+++ b/reference/skewness.html
@@ -12,7 +12,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
AMR (for R)
- 1.8.1.9021
+ 1.8.1.9026
@@ -84,11 +84,6 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
Get properties of an antibiotic
-
-
-
- Other: benchmarks
-
@@ -171,7 +166,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
diff --git a/search.json b/search.json
index 7930ec0d..02b1054d 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to conduct AMR data analysis","text":"Conducting AMR data analysis unfortunately requires -depth knowledge different scientific fields, makes hard right. least, requires: Good questions (always start !) thorough understanding (clinical) epidemiology, understand clinical epidemiological relevance possible bias results thorough understanding (clinical) microbiology/infectious diseases, understand microorganisms causal infections implications pharmaceutical treatment, well understanding intrinsic acquired microbial resistance Experience data analysis microbiological tests results, understand determination limitations MIC values interpretations RSI values Availability biological taxonomy microorganisms probably normalisation factors pharmaceuticals, defined daily doses (DDD) Available (inter-)national guidelines, profound methods apply course, instantly provide knowledge experience. AMR package, aimed providing (1) tools simplify antimicrobial resistance data cleaning, transformation analysis, (2) methods easily incorporate international guidelines (3) scientifically reliable reference data, including requirements mentioned . AMR package enables standardised reproducible AMR data analysis, application evidence-based rules, determination first isolates, translation various codes microorganisms antimicrobial agents, determination (multi-drug) resistant microorganisms, calculation antimicrobial resistance, prevalence future trends.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"How to conduct AMR data analysis","text":"tutorial, create fake demonstration data work . can skip Cleaning data already data ready. start analysis, try make structure data generally look like :","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"needed-r-packages","dir":"Articles","previous_headings":"Preparation","what":"Needed R packages","title":"How to conduct AMR data analysis","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2 RStudio. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. also use cleaner package, can used cleaning data creating frequency tables.","code":"library(dplyr) library(ggplot2) library(AMR) library(cleaner) # (if not yet installed, install with:) # install.packages(c(\"dplyr\", \"ggplot2\", \"AMR\", \"cleaner\"))"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"creation-of-data","dir":"Articles","previous_headings":"","what":"Creation of data","title":"How to conduct AMR data analysis","text":"create fake example data use analysis. AMR data analysis, need least: patient ID, name code microorganism, date antimicrobial results (antibiogram). also include specimen type (e.g. filter blood urine), ward type (e.g. filter ICUs). additional columns (like hospital name, patients gender even [well-defined] clinical properties) can comparative analysis, tutorial demonstrate .","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"patients","dir":"Articles","previous_headings":"Creation of data","what":"Patients","title":"How to conduct AMR data analysis","text":"start patients, need unique list patients. LETTERS object available R - ’s vector 26 characters: Z. patients object just created now vector length 260, values (patient IDs) varying A1 Z10. Now also set gender patients, putting ID gender table: first 135 patient IDs now male, 125 female.","code":"patients <- unlist(lapply(LETTERS, paste0, 1:10)) patients_table <- data.frame(patient_id = patients, gender = c(rep(\"M\", 135), rep(\"F\", 125)))"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"dates","dir":"Articles","previous_headings":"Creation of data","what":"Dates","title":"How to conduct AMR data analysis","text":"Let’s pretend data consists blood cultures isolates 1 January 2010 1 January 2018. dates object now contains days date range.","code":"dates <- seq(as.Date(\"2010-01-01\"), as.Date(\"2018-01-01\"), by = \"day\")"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"microorganisms","dir":"Articles","previous_headings":"Creation of data > Dates","what":"Microorganisms","title":"How to conduct AMR data analysis","text":"tutorial, uses four different microorganisms: Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae:","code":"bacteria <- c(\"Escherichia coli\", \"Staphylococcus aureus\", \"Streptococcus pneumoniae\", \"Klebsiella pneumoniae\")"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"put-everything-together","dir":"Articles","previous_headings":"Creation of data","what":"Put everything together","title":"How to conduct AMR data analysis","text":"Using sample() function, can randomly select items objects defined earlier. let fake data reflect reality bit, also approximately define probabilities bacteria antibiotic results, using random_rsi() function. Using left_join() function dplyr package, can ‘map’ gender patient ID using patients_table object created earlier: resulting data set contains 20,000 blood culture isolates. head() function can preview first 6 rows data set: Now, let’s start cleaning analysis!","code":"sample_size <- 20000 data <- data.frame(date = sample(dates, size = sample_size, replace = TRUE), patient_id = sample(patients, size = sample_size, replace = TRUE), hospital = sample(c(\"Hospital A\", \"Hospital B\", \"Hospital C\", \"Hospital D\"), size = sample_size, replace = TRUE, prob = c(0.30, 0.35, 0.15, 0.20)), bacteria = sample(bacteria, size = sample_size, replace = TRUE, prob = c(0.50, 0.25, 0.15, 0.10)), AMX = random_rsi(sample_size, prob_RSI = c(0.35, 0.60, 0.05)), AMC = random_rsi(sample_size, prob_RSI = c(0.15, 0.75, 0.10)), CIP = random_rsi(sample_size, prob_RSI = c(0.20, 0.80, 0.00)), GEN = random_rsi(sample_size, prob_RSI = c(0.08, 0.92, 0.00))) data <- data %>% left_join(patients_table) head(data)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"cleaning-the-data","dir":"Articles","previous_headings":"","what":"Cleaning the data","title":"How to conduct AMR data analysis","text":"also created package dedicated data cleaning checking, called cleaner package. freq() function can used create frequency tables. example, gender variable: Frequency table Class: character Length: 20,000 Available: 20,000 (100.0%, NA: 0 = 0.0%) Unique: 2 Shortest: 1 Longest: 1 , can draw least two conclusions immediately. data scientists perspective, data looks clean: values M F. researchers perspective: slightly men. Nothing didn’t already know. data already quite clean, still need transform variables. bacteria column now consists text, want add variables based microbial IDs later . , transform column valid IDs. mutate() function dplyr package makes really easy: also want transform antibiotics, real life data don’t know really clean. .rsi() function ensures reliability reproducibility kind variables. .rsi.eligible() can check columns probably columns R/SI test results. Using mutate() across(), can apply transformation formal class: Finally, apply EUCAST rules antimicrobial results. Europe, medical microbiological laboratories already apply rules. package features latest insights intrinsic resistance exceptional phenotypes. Moreover, eucast_rules() function can also apply additional rules, like forcing ampicillin = R amoxicillin/clavulanic acid = R. amoxicillin (column AMX) amoxicillin/clavulanic acid (column AMC) data generated randomly, rows undoubtedly contain AMX = S AMC = R, technically impossible. eucast_rules() fixes :","code":"data %>% freq(gender) data <- data %>% mutate(bacteria = as.mo(bacteria)) is.rsi.eligible(data) # [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE colnames(data)[is.rsi.eligible(data)] # [1] \"AMX\" \"AMC\" \"CIP\" \"GEN\" data <- data %>% mutate(across(where(is.rsi.eligible), as.rsi)) data <- eucast_rules(data, col_mo = \"bacteria\", rules = \"all\")"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"adding-new-variables","dir":"Articles","previous_headings":"","what":"Adding new variables","title":"How to conduct AMR data analysis","text":"Now microbial ID, can add taxonomic properties:","code":"data <- data %>% mutate(gramstain = mo_gramstain(bacteria), genus = mo_genus(bacteria), species = mo_species(bacteria))"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"first-isolates","dir":"Articles","previous_headings":"Adding new variables","what":"First isolates","title":"How to conduct AMR data analysis","text":"also need know isolates can actually use analysis. conduct analysis antimicrobial resistance, must include first isolate every patient per episode (Hindler et al., Clin Infect Dis. 2007). , easily get overestimate underestimate resistance antibiotic. Imagine patient admitted MRSA found 5 different blood cultures following weeks (yes, countries like Netherlands blood drawing policies). resistance percentage oxacillin isolates overestimated, included MRSA . clearly selection bias. Clinical Laboratory Standards Institute (CLSI) appoints follows: (…) preparing cumulative antibiogram guide clinical decisions empirical antimicrobial therapy initial infections, first isolate given species per patient, per analysis period (eg, one year) included, irrespective body site, antimicrobial susceptibility profile, phenotypical characteristics (eg, biotype). first isolate easily identified, cumulative antimicrobial susceptibility test data prepared using first isolate generally comparable cumulative antimicrobial susceptibility test data calculated methods, providing duplicate isolates excluded. M39-A4 Analysis Presentation Cumulative Antimicrobial Susceptibility Test Data, 4th Edition. CLSI, 2014. Chapter 6.4 AMR package includes methodology first_isolate() function able apply four different methods defined Hindler et al. 2007: phenotype-based, episode-based, patient-based, isolate-based. right method depends goals analysis, default phenotype-based method case method properly correct duplicate isolates. method also takes account antimicrobial susceptibility test results using all_microbials(). Read methods first_isolate() page. outcome function can easily added data: 53.1% suitable resistance analysis! can now filter filter() function, also dplyr package: future use, two syntaxes can shortened: end 10,619 isolates analysis. Now data looks like: Time analysis!","code":"data <- data %>% mutate(first = first_isolate(info = TRUE)) # Determining first isolates using an episode length of 365 days # ℹ Using column 'bacteria' as input for `col_mo`. # ℹ Using column 'date' as input for `col_date`. # ℹ Using column 'patient_id' as input for `col_patient_id`. # Basing inclusion on all antimicrobial results, using a points threshold of # 2 # => Found 10,619 'phenotype-based' first isolates (53.1% of total where a # microbial ID was available) data_1st <- data %>% filter(first == TRUE) data_1st <- data %>% filter_first_isolate() head(data_1st)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"analysing-the-data","dir":"Articles","previous_headings":"","what":"Analysing the data","title":"How to conduct AMR data analysis","text":"might want start getting idea data distributed. ’s important start, also decides continue analysis. Although package contains convenient function make frequency tables, exploratory data analysis (EDA) primary scope package. Use package like DataExplorer , read free online book Exploratory Data Analysis R Roger D. Peng.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"dispersion-of-species","dir":"Articles","previous_headings":"Analysing the data","what":"Dispersion of species","title":"How to conduct AMR data analysis","text":"just get idea species distributed, create frequency table freq() function. created genus species column earlier based microbial ID. paste(), can concatenate together. freq() function can used like base R language intended: can used like dplyr way, easier readable: Frequency table Class: character Length: 10,619 Available: 10,619 (100.0%, NA: 0 = 0.0%) Unique: 4 Shortest: 16 Longest: 24","code":"freq(paste(data_1st$genus, data_1st$species)) data_1st %>% freq(genus, species)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"overview-of-different-bugdrug-combinations","dir":"Articles","previous_headings":"Analysing the data","what":"Overview of different bug/drug combinations","title":"How to conduct AMR data analysis","text":"Using tidyverse selections, can also select filter columns based antibiotic class : want get quick glance number isolates different bug/drug combinations, can use bug_drug_combinations() function: give crude numbers data. calculate antimicrobial resistance sensible way, also correcting results, use resistance() susceptibility() functions.","code":"data_1st %>% filter(any(aminoglycosides() == \"R\")) # ℹ For `aminoglycosides()` using column 'GEN' (gentamicin) data_1st %>% bug_drug_combinations() %>% head() # show first 6 rows # ℹ Using column 'bacteria' as input for `col_mo`. data_1st %>% select(bacteria, aminoglycosides()) %>% bug_drug_combinations() # ℹ For `aminoglycosides()` using column 'GEN' (gentamicin) # ℹ Using column 'bacteria' as input for `col_mo`."},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"resistance-percentages","dir":"Articles","previous_headings":"Analysing the data","what":"Resistance percentages","title":"How to conduct AMR data analysis","text":"functions resistance() susceptibility() can used calculate antimicrobial resistance susceptibility. specific analyses, functions proportion_S(), proportion_SI(), proportion_I(), proportion_IR() proportion_R() can used determine proportion specific antimicrobial outcome. functions contain minimum argument, denoting minimum required number test results returning value. functions otherwise return NA. default minimum = 30, following CLSI M39-A4 guideline applying microbial epidemiology. per EUCAST guideline 2019, calculate resistance proportion R (proportion_R(), equal resistance()) susceptibility proportion S (proportion_SI(), equal susceptibility()). functions can used : can used conjunction group_by() summarise(), dplyr package: course convenient know number isolates responsible percentages. purpose n_rsi() can used, works exactly like n_distinct() dplyr package. counts isolates available every group (.e. values S, R): functions can also used get proportion multiple antibiotics, calculate empiric susceptibility combination therapies easily: curious resistance within certain antibiotic classes, use antibiotic class selector penicillins(), automatically include columns AMX AMC data: make transition next part, let’s see differences previously calculated combination therapies plotted:","code":"data_1st %>% resistance(AMX) # [1] 0.5432715 data_1st %>% group_by(hospital) %>% summarise(amoxicillin = resistance(AMX)) data_1st %>% group_by(hospital) %>% summarise(amoxicillin = resistance(AMX), available = n_rsi(AMX)) data_1st %>% group_by(genus) %>% summarise(amoxiclav = susceptibility(AMC), gentamicin = susceptibility(GEN), amoxiclav_genta = susceptibility(AMC, GEN)) data_1st %>% # group by hospital group_by(hospital) %>% # / -> select all penicillins in the data for calculation # | / -> use resistance() for all peni's per hospital # | | / -> print as percentages summarise(across(penicillins(), resistance, as_percent = TRUE)) %>% # format the antibiotic column names, using so-called snake case, # so 'Amoxicillin/clavulanic acid' becomes 'amoxicillin_clavulanic_acid' rename_with(set_ab_names, penicillins()) data_1st %>% group_by(genus) %>% summarise(\"1. Amoxi/clav\" = susceptibility(AMC), \"2. Gentamicin\" = susceptibility(GEN), \"3. Amoxi/clav + genta\" = susceptibility(AMC, GEN)) %>% # pivot_longer() from the tidyr package \"lengthens\" data: tidyr::pivot_longer(-genus, names_to = \"antibiotic\") %>% ggplot(aes(x = genus, y = value, fill = antibiotic)) + geom_col(position = \"dodge2\")"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"plots","dir":"Articles","previous_headings":"Analysing the data","what":"Plots","title":"How to conduct AMR data analysis","text":"show results plots, R users nowadays use ggplot2 package. package lets create plots layers. can read website. quick example look like syntaxes: AMR package contains functions extend ggplot2 package, example geom_rsi(). automatically transforms data count_df() proportion_df() show results stacked bars. simplest shortest example: Omit translate_ab = FALSE antibiotic codes (AMX, AMC, CIP, GEN) translated official names (amoxicillin, amoxicillin/clavulanic acid, ciprofloxacin, gentamicin). group e.g. genus column add additional functions package, can create : simplify , also created ggplot_rsi() function, combines almost functions:","code":"ggplot(data = a_data_set, mapping = aes(x = year, y = value)) + geom_col() + labs(title = \"A title\", subtitle = \"A subtitle\", x = \"My X axis\", y = \"My Y axis\") # or as short as: ggplot(a_data_set) + geom_bar(aes(year)) ggplot(data_1st) + geom_rsi(translate_ab = FALSE) # group the data on `genus` ggplot(data_1st %>% group_by(genus)) + # create bars with genus on x axis # it looks for variables with class `rsi`, # of which we have 4 (earlier created with `as.rsi`) geom_rsi(x = \"genus\") + # split plots on antibiotic facet_rsi(facet = \"antibiotic\") + # set colours to the R/SI interpretations (colour-blind friendly) scale_rsi_colours() + # show percentages on y axis scale_y_percent(breaks = 0:4 * 25) + # turn 90 degrees, to make it bars instead of columns coord_flip() + # add labels labs(title = \"Resistance per genus and antibiotic\", subtitle = \"(this is fake data)\") + # and print genus in italic to follow our convention # (is now y axis because we turned the plot) theme(axis.text.y = element_text(face = \"italic\")) data_1st %>% group_by(genus) %>% ggplot_rsi(x = \"genus\", facet = \"antibiotic\", breaks = 0:4 * 25, datalabels = FALSE) + coord_flip()"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"plotting-mic-and-disk-diffusion-values","dir":"Articles","previous_headings":"Analysing the data > Plots","what":"Plotting MIC and disk diffusion values","title":"How to conduct AMR data analysis","text":"AMR package also extends plot() ggplot2::autoplot() functions plotting minimum inhibitory concentrations (MIC, created .mic()) disk diffusion diameters (created .disk()). random_mic() random_disk() functions, can generate sampled values new data types (S3 classes) : also specific, generating MICs likely found E. coli ciprofloxacin: plot() autoplot() function, can define microorganism antimicrobial agent way. add interpretation values according chosen guidelines (defaults latest EUCAST guideline). Default colours colour-blind friendly, maintaining convention e.g. ‘susceptible’ green ‘resistant’ red: disk diffusion values, much difference plotting: using ggplot2 package, now choosing latest implemented CLSI guideline (notice EUCAST-specific term “Susceptible, incr. exp.” changed “Intermediate”):","code":"mic_values <- random_mic(size = 100) mic_values # Class # [1] 256 16 0.002 0.025 8 0.025 32 0.025 0.01 256 # [11] 16 0.01 32 0.025 0.01 0.0625 2 0.25 128 0.005 # [21] 0.01 16 0.125 0.25 0.01 0.001 8 0.025 8 1 # [31] 0.025 0.25 0.0625 256 0.001 0.025 0.001 8 0.01 0.025 # [41] 0.25 8 64 8 0.25 4 1 0.0625 0.0625 0.5 # [51] 2 0.002 16 0.002 0.01 16 0.25 64 8 256 # [61] 0.005 0.0625 1 64 64 0.5 128 0.002 32 0.002 # [71] 128 128 0.5 0.002 0.25 0.5 0.125 1 16 64 # [81] 128 32 0.025 128 16 32 32 32 0.002 0.125 # [91] 0.5 0.0625 0.5 128 0.125 128 8 0.25 128 0.25 # base R: plot(mic_values) # ggplot2: autoplot(mic_values) mic_values <- random_mic(size = 100, mo = \"E. coli\", ab = \"cipro\") # base R: plot(mic_values, mo = \"E. coli\", ab = \"cipro\") # ggplot2: autoplot(mic_values, mo = \"E. coli\", ab = \"cipro\") disk_values <- random_disk(size = 100, mo = \"E. coli\", ab = \"cipro\") # ℹ Function `as.mo()` is uncertain about \"E. coli\" (assuming Escherichia # coli). Run `mo_uncertainties()` to review this. disk_values # Class # [1] 23 21 25 21 18 21 18 19 23 26 28 30 20 21 17 17 27 26 31 30 25 17 27 27 19 # [26] 31 23 23 23 22 20 26 17 24 29 26 24 25 29 22 22 29 26 22 24 25 26 18 31 24 # [51] 25 28 26 27 19 21 21 29 27 21 27 21 18 17 20 20 17 25 30 20 19 20 23 27 31 # [76] 24 31 24 22 26 19 19 20 20 25 17 21 22 30 25 23 26 31 20 30 18 29 18 29 17 # base R: plot(disk_values, mo = \"E. coli\", ab = \"cipro\") autoplot(disk_values, mo = \"E. coli\", ab = \"cipro\", guideline = \"CLSI\")"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"independence-test","dir":"Articles","previous_headings":"Analysing the data","what":"Independence test","title":"How to conduct AMR data analysis","text":"next example uses example_isolates data set. data set included package contains 2,000 microbial isolates full antibiograms. reflects reality can used practice AMR data analysis. compare resistance fosfomycin (column FOS) hospital D. input fisher.test() can retrieved transformation like : can apply test now : can seen, p value 0.031, means fosfomycin resistance found isolates patients hospital D really different.","code":"# use package 'tidyr' to pivot data: library(tidyr) check_FOS <- example_isolates %>% filter(hospital_id %in% c(\"A\", \"D\")) %>% # filter on only hospitals A and D select(hospital_id, FOS) %>% # select the hospitals and fosfomycin group_by(hospital_id) %>% # group on the hospitals count_df(combine_SI = TRUE) %>% # count all isolates per group (hospital_id) pivot_wider(names_from = hospital_id, # transform output so A and D are columns values_from = value) %>% select(A, D) %>% # and only select these columns as.matrix() # transform to a good old matrix for fisher.test() check_FOS # A D # [1,] 25 77 # [2,] 24 33 # do Fisher's Exact Test fisher.test(check_FOS) # # Fisher's Exact Test for Count Data # # data: check_FOS # p-value = 0.03104 # alternative hypothesis: true odds ratio is not equal to 1 # 95 percent confidence interval: # 0.2111489 0.9485124 # sample estimates: # odds ratio # 0.4488318"},{"path":"https://msberends.github.io/AMR/articles/EUCAST.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to apply EUCAST rules","text":"EUCAST rules? European Committee Antimicrobial Susceptibility Testing (EUCAST) states website: EUCAST expert rules tabulated collection expert knowledge intrinsic resistances, exceptional resistance phenotypes interpretive rules may applied antimicrobial susceptibility testing order reduce errors make appropriate recommendations reporting particular resistances. Europe, lot medical microbiological laboratories already apply rules (Brown et al., 2015). package features latest insights intrinsic resistance unusual phenotypes (v3.3, 2021). Moreover, eucast_rules() function use purpose can also apply additional rules, like forcing ampicillin = R isolates amoxicillin/clavulanic acid = R.","code":""},{"path":"https://msberends.github.io/AMR/articles/EUCAST.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to apply EUCAST rules","text":"rules can used discard impossible bug-drug combinations data. example, Klebsiella produces beta-lactamase prevents ampicillin (amoxicillin) working . words, practically every strain Klebsiella resistant ampicillin. Sometimes, laboratory data can still contain strains ampicillin susceptible ampicillin. antibiogram available identification available, antibiogram re-interpreted based identification (namely, Klebsiella). EUCAST expert rules solve , can applied using eucast_rules(): convenient function mo_is_intrinsic_resistant() uses guideline, allows check one specific microorganisms antibiotics: EUCAST rules can used correction, can also used filling known resistance susceptibility based results antimicrobials drugs. process called interpretive reading, basically form imputation, part eucast_rules() function well:","code":"oops <- data.frame(mo = c(\"Klebsiella\", \"Escherichia\"), ampicillin = \"S\") oops # mo ampicillin # 1 Klebsiella S # 2 Escherichia S eucast_rules(oops, info = FALSE) # mo ampicillin # 1 Klebsiella R # 2 Escherichia S mo_is_intrinsic_resistant(c(\"Klebsiella\", \"Escherichia\"), \"ampicillin\") # [1] TRUE FALSE mo_is_intrinsic_resistant(\"Klebsiella\", c(\"ampicillin\", \"kanamycin\")) # [1] TRUE FALSE data <- data.frame(mo = c(\"Staphylococcus aureus\", \"Enterococcus faecalis\", \"Escherichia coli\", \"Klebsiella pneumoniae\", \"Pseudomonas aeruginosa\"), VAN = \"-\", # Vancomycin AMX = \"-\", # Amoxicillin COL = \"-\", # Colistin CAZ = \"-\", # Ceftazidime CXM = \"-\", # Cefuroxime PEN = \"S\", # Benzylenicillin FOX = \"S\", # Cefoxitin stringsAsFactors = FALSE) data eucast_rules(data)"},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"type-of-input","dir":"Articles","previous_headings":"","what":"Type of input","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function takes data set input, regular data.frame. tries automatically determine right columns info isolates, name species columns results antimicrobial agents. See help page info set right settings data command ?mdro. WHONET data (data), settings automatically set correctly.","code":""},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"guidelines","dir":"Articles","previous_headings":"","what":"Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function support multiple guidelines. can select guideline guideline parameter. Currently supported guidelines (case-insensitive): guideline = \"CMI2012\" (default) Magiorakos AP, Srinivasan et al. “Multidrug-resistant, extensively drug-resistant pandrug-resistant bacteria: international expert proposal interim standard definitions acquired resistance.” Clinical Microbiology Infection (2012) (link) guideline = \"EUCAST3.2\" (simply guideline = \"EUCAST\") European international guideline - EUCAST Expert Rules Version 3.2 “Intrinsic Resistance Unusual Phenotypes” (link) guideline = \"EUCAST3.1\" European international guideline - EUCAST Expert Rules Version 3.1 “Intrinsic Resistance Exceptional Phenotypes Tables” (link) guideline = \"TB\" international guideline multi-drug resistant tuberculosis - World Health Organization “Companion handbook guidelines programmatic management drug-resistant tuberculosis” (link) guideline = \"MRGN\" German national guideline - Mueller et al. (2015) Antimicrobial Resistance Infection Control 4:7. DOI: 10.1186/s13756-015-0047-6 guideline = \"BRMO\" Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu “WIP-richtlijn BRMO (Bijzonder Resistente Micro-Organismen) (ZKH)” (link) Please suggest (country-specific) guidelines letting us know: https://github.com/msberends/AMR/issues/new.","code":""},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"custom-guidelines","dir":"Articles","previous_headings":"Guidelines","what":"Custom Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"can also use custom guideline. Custom guidelines can set custom_mdro_guideline() function. great importance custom rules determine MDROs hospital, e.g., rules dependent ward, state contact isolation variables data. familiar case_when() dplyr package, recognise input method set rules. Rules must set using R considers ‘formula notation’: row/isolate matches first rule, value first ~ (case ‘Elderly Type ’) set MDRO value. Otherwise, second rule tried . maximum number rules unlimited. can print rules set console overview. Colours help reading console supports colours. outcome function can used guideline argument mdro() function: rules set (custom object case) exported shared file location using saveRDS() collaborate multiple users. custom rules set imported using readRDS().","code":"custom <- custom_mdro_guideline(CIP == \"R\" & age > 60 ~ \"Elderly Type A\", ERY == \"R\" & age > 60 ~ \"Elderly Type B\") custom # A set of custom MDRO rules: # 1. If CIP is \"R\" and age is higher than 60 then: Elderly Type A # 2. If ERY is \"R\" and age is higher than 60 then: Elderly Type B # 3. Otherwise: Negative # # Unmatched rows will return NA. # Results will be of class , with ordered levels: Negative < Elderly Type A < Elderly Type B x <- mdro(example_isolates, guideline = custom) table(x) # x # Negative Elderly Type A Elderly Type B # 1070 198 732"},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function always returns ordered factor predefined guidelines. example, output default guideline Magiorakos et al. returns factor levels ‘Negative’, ‘MDR’, ‘XDR’ ‘PDR’ order. next example uses example_isolates data set. data set included package contains full antibiograms 2,000 microbial isolates. reflects reality can used practise AMR data analysis. test MDR/XDR/PDR guideline data set, get: (16 isolates test results) Frequency table Class: factor > ordered (numeric) Length: 2,000 Levels: 4: Negative < Multi-drug-resistant (MDR) < Extensively drug-resistant … Available: 1,729 (86.45%, NA: 271 = 13.55%) Unique: 2 another example, create data set determine multi-drug resistant TB: column names automatically verified valid drug names codes, worked exactly way: data set now looks like : can now add interpretation MDR-TB data set. can use: shortcut mdr_tb(): Create frequency table results: Frequency table Class: factor > ordered (numeric) Length: 5,000 Levels: 5: Negative < Mono-resistant < Poly-resistant < Multi-drug-resistant <… Available: 5,000 (100.0%, NA: 0 = 0.0%) Unique: 5","code":"library(dplyr) # to support pipes: %>% library(cleaner) # to create frequency tables example_isolates %>% mdro() %>% freq() # show frequency table of the result # Warning: in `mdro()`: NA introduced for isolates where the available percentage of # antimicrobial classes was below 50% (set with `pct_required_classes`) # random_rsi() is a helper function to generate # a random vector with values S, I and R my_TB_data <- data.frame(rifampicin = random_rsi(5000), isoniazid = random_rsi(5000), gatifloxacin = random_rsi(5000), ethambutol = random_rsi(5000), pyrazinamide = random_rsi(5000), moxifloxacin = random_rsi(5000), kanamycin = random_rsi(5000)) my_TB_data <- data.frame(RIF = random_rsi(5000), INH = random_rsi(5000), GAT = random_rsi(5000), ETH = random_rsi(5000), PZA = random_rsi(5000), MFX = random_rsi(5000), KAN = random_rsi(5000)) head(my_TB_data) # rifampicin isoniazid gatifloxacin ethambutol pyrazinamide moxifloxacin # 1 S S R I R I # 2 I R S S S S # 3 I R S I S S # 4 R I S I S R # 5 I I S R S R # 6 S I S S R R # kanamycin # 1 S # 2 S # 3 I # 4 R # 5 I # 6 S mdro(my_TB_data, guideline = \"TB\") my_TB_data$mdr <- mdr_tb(my_TB_data) # ℹ No column found as input for `col_mo`, assuming all rows contain # Mycobacterium tuberculosis. freq(my_TB_data$mdr)"},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"transforming","dir":"Articles","previous_headings":"","what":"Transforming","title":"How to conduct principal component analysis (PCA) for AMR","text":"PCA, need transform AMR data first. example_isolates data set package looks like: Now transform data set resistance percentages per taxonomic order genus:","code":"library(AMR) library(dplyr) glimpse(example_isolates) # Rows: 2,000 # Columns: 49 # $ date 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002-… # $ hospital_id D, D, B, B, B, B, D, D, B, B, D, D, D, D, D, B, B, B, … # $ ward_icu FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TR… # $ ward_clinical TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FA… # $ ward_outpatient FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE… # $ age 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 71… # $ gender \"F\", \"F\", \"F\", \"F\", \"F\", \"F\", \"M\", \"M\", \"F\", \"F\", \"M\",… # $ patient_id \"A77334\", \"A77334\", \"067927\", \"067927\", \"067927\", \"067… # $ mo \"B_ESCHR_COLI\", \"B_ESCHR_COLI\", \"B_STPHY_EPDR\", \"B_STPH… # $ PEN R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, … # $ OXA NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ FLC NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA, … # $ AMX NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, … # $ AMC I, I, NA, NA, NA, NA, S, S, NA, NA, S, S, I, I, R, I, … # $ AMP NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, … # $ TZP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ CZO NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ FEP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ CXM I, I, R, R, R, R, S, S, R, S, S, S, S, S, NA, S, S, R,… # $ FOX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ CTX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, … # $ CAZ NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, S, S… # $ CRO NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, … # $ GEN NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ TOB NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, S, S, NA… # $ AMK NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ KAN NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ TMP R, R, S, S, R, R, R, R, S, S, NA, NA, S, S, S, S, S, R… # $ SXT R, R, S, S, NA, NA, NA, NA, S, S, NA, NA, S, S, S, S, … # $ NIT NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ FOS NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ LNZ R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R,… # $ CIP NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, … # $ MFX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ VAN R, R, S, S, S, S, S, S, S, S, NA, NA, R, R, R, R, R, S… # $ TEC R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R,… # $ TCY R, R, S, S, S, S, S, S, S, I, S, S, NA, NA, I, R, R, S… # $ TGC NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, … # $ DOX NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, … # $ ERY R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, … # $ CLI R, R, NA, NA, NA, R, NA, NA, NA, NA, NA, NA, R, R, R, … # $ AZM R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, … # $ IPM NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, … # $ MEM NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ MTR NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ CHL NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ COL NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, R, R… # $ MUP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ RIF R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R,… resistance_data <- example_isolates %>% group_by(order = mo_order(mo), # group on anything, like order genus = mo_genus(mo)) %>% # and genus as we do here summarise_if(is.rsi, resistance) %>% # then get resistance of all drugs select(order, genus, AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT) # and select only relevant columns head(resistance_data) # # A tibble: 6 × 10 # # Groups: order [5] # order genus AMC CXM CTX CAZ GEN TOB TMP SXT # # 1 (unknown order) (unknown ge… NA NA NA NA NA NA NA NA # 2 Actinomycetales Schaalia NA NA NA NA NA NA NA NA # 3 Bacteroidales Bacteroides NA NA NA NA NA NA NA NA # 4 Campylobacterales Campylobact… NA NA NA NA NA NA NA NA # 5 Caryophanales Gemella NA NA NA NA NA NA NA NA # 6 Caryophanales Listeria NA NA NA NA NA NA NA NA"},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"perform-principal-component-analysis","dir":"Articles","previous_headings":"","what":"Perform principal component analysis","title":"How to conduct principal component analysis (PCA) for AMR","text":"new pca() function automatically filter rows contain numeric values selected variables, now need : result can reviewed good old summary() function: Good news. first two components explain total 93.3% variance (see PC1 PC2 values Proportion Variance. can create -called biplot base R biplot() function, see antimicrobial resistance per drug explain difference per microorganism.","code":"pca_result <- pca(resistance_data) # ℹ Columns selected for PCA: \"AMC\", \"CAZ\", \"CTX\", \"CXM\", \"GEN\", \"SXT\", \"TMP\" # and \"TOB\". Total observations available: 7. summary(pca_result) # Groups (n=4, named as 'order'): # [1] \"Caryophanales\" \"Enterobacterales\" \"Lactobacillales\" \"Pseudomonadales\" # Importance of components: # PC1 PC2 PC3 PC4 PC5 PC6 PC7 # Standard deviation 2.1539 1.6807 0.6138 0.33879 0.20808 0.03140 5.121e-17 # Proportion of Variance 0.5799 0.3531 0.0471 0.01435 0.00541 0.00012 0.000e+00 # Cumulative Proportion 0.5799 0.9330 0.9801 0.99446 0.99988 1.00000 1.000e+00 # Groups (n=4, named as 'order'): # [1] \"Caryophanales\" \"Enterobacterales\" \"Lactobacillales\" \"Pseudomonadales\""},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"plotting-the-results","dir":"Articles","previous_headings":"","what":"Plotting the results","title":"How to conduct principal component analysis (PCA) for AMR","text":"can’t see explanation points. Perhaps works better new ggplot_pca() function, automatically adds right labels even groups: can also print ellipse per group, edit appearance:","code":"biplot(pca_result) ggplot_pca(pca_result) ggplot_pca(pca_result, ellipse = TRUE) + ggplot2::labs(title = \"An AMR/PCA biplot!\")"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"spss-sas-stata","dir":"Articles","previous_headings":"","what":"SPSS / SAS / Stata","title":"How to import data from SPSS / SAS / Stata","text":"SPSS (Statistical Package Social Sciences) probably well-known software package statistical analysis. SPSS easier learn R, SPSS click menu run parts analysis. user-friendliness, taught universities particularly useful students new statistics. experience, guess pretty much (bio)medical students know time graduate. SAS Stata comparable statistical packages popular big industries.","code":""},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"compared-to-r","dir":"Articles","previous_headings":"","what":"Compared to R","title":"How to import data from SPSS / SAS / Stata","text":"said, SPSS easier learn R. SPSS, SAS Stata come major downsides comparing R: R highly modular. official R network (CRAN) features 16,000 packages time writing, AMR package one . packages peer-reviewed publication. Aside official channel, also developers choose submit CRAN, rather keep public repository, like GitHub. may even lot 14,000 packages . Bottom line , can really extend ask somebody . Take example AMR package. Among things, adds reliable reference data R help data cleaning analysis. SPSS, SAS Stata never know valid MIC value Gram stain E. coli . species Klebiella resistant amoxicillin Floxapen® trade name flucloxacillin. facts properties often needed clean existing data, inconvenient software package without reliable reference data. See demonstration. R extremely flexible. write syntax , can anything want. flexibility transforming, arranging, grouping summarising data, drawing plots, endless - SPSS, SAS Stata bound algorithms format styles. may bit flexible, can probably never create specific publication-ready plot without using (paid) software. sometimes write syntaxes SPSS run complete analysis ‘automate’ work, lot less time R. notice writing syntaxes R lot nifty clever SPSS. Still, working statistical package, knowledge (statistically) willing accomplish. R can easily automated. last years, R Markdown really made interesting development. R Markdown, can easily produce reports, whether format Word, PowerPoint, website, PDF document just raw data Excel. even allows use reference file containing layout style (e.g. fonts colours) organisation. use lot generate weekly monthly reports automatically. Just write code enjoy automatically updated reports interval like. even professional environment, create Shiny apps: live manipulation data using custom made website. webdesign knowledge needed (JavaScript, CSS, HTML) almost zero. R huge community. Many R users just ask questions websites like StackOverflow.com, largest online community programmers. time writing, 460,146 R-related questions already asked platform (covers questions answers programming language). experience, questions answered within couple minutes. R understands data type, including SPSS/SAS/Stata. ’s vice versa ’m afraid. can import data source R. example SPSS, SAS Stata (link), Minitab, Epi Info EpiData (link), Excel (link), flat files like CSV, TXT TSV (link), directly databases datawarehouses anywhere world (link). can even scrape websites download tables live internet (link) get results API call transform data one command (link). best part - can export R data formats well. can import SPSS file, analysis neatly R export resulting tables Excel files sharing. R completely free open-source. strings attached. created maintained volunteers believe (data) science open publicly available everybody. SPSS, SAS Stata quite expensive. IBM SPSS Staticstics comes subscriptions nowadays, varying USD 1,300 USD 8,500 per user per year. SAS Analytics Pro costs around USD 10,000 per computer. Stata also business model subscription fees, varying USD 600 USD 2,800 per computer per year, lower prices come limitation number variables can work . still offer benefits R. working midsized small company, can save tens thousands dollars using R instead e.g. SPSS - gaining even functions flexibility. R enthousiasts can much PR want (like ), nobody officially associated affiliated R. really free. R (nowadays) preferred analysis software academic papers. present, R among world powerful statistical languages, generally popular science (Bollmann et al., 2017). reasons, number references R analysis method academic papers rising continuously even surpassed SPSS academic use (Muenchen, 2014). believe thing SPSS , always great user interface easy learn use. Back developed , little competition, let alone R. R didn’t even professional user interface last decade (called RStudio, see ). people used R nineties 2010 almost completely incomparable R used now. language restyled completely volunteers dedicated professionals field data science. SPSS great nothing else compete. now 2022, don’t see reason SPSS better use R. demonstrate first point:","code":"# not all values are valid MIC values: as.mic(0.125) # Class # [1] 0.125 as.mic(\"testvalue\") # Class # [1] # the Gram stain is available for all bacteria: mo_gramstain(\"E. coli\") # [1] \"Gram-negative\" # Klebsiella is intrinsic resistant to amoxicillin, according to EUCAST: klebsiella_test <- data.frame(mo = \"klebsiella\", amox = \"S\", stringsAsFactors = FALSE) klebsiella_test # (our original data) # mo amox # 1 klebsiella S eucast_rules(klebsiella_test, info = FALSE) # (the edited data by EUCAST rules) # mo amox # 1 klebsiella R # hundreds of trade names can be translated to a name, trade name or an ATC code: ab_name(\"floxapen\") # [1] \"Flucloxacillin\" ab_tradenames(\"floxapen\") # [1] \"floxacillin\" \"floxapen\" \"floxapen sodium salt\" # [4] \"fluclox\" \"flucloxacilina\" \"flucloxacillin\" # [7] \"flucloxacilline\" \"flucloxacillinum\" \"fluorochloroxacillin\" ab_atc(\"floxapen\") # [1] \"J01CF05\""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"rstudio","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata","what":"RStudio","title":"How to import data from SPSS / SAS / Stata","text":"work R, probably best option use RStudio. open-source free desktop environment allows run R code, also supports project management, version management, package management convenient import menus work data sources. can also install RStudio Server private corporate server, brings nothing less complete RStudio software website (home work). import data file, just click Import Dataset Environment tab: additional packages needed, RStudio ask installed beforehand. window opens, can define options (parameters) used import ’re ready go: want named variables imported factors resembles SPSS , use as_factor(). difference :","code":"SPSS_data # # A tibble: 4,203 x 4 # v001 sex status statusage # # 1 10002 1 1 76.6 # 2 10004 0 1 59.1 # 3 10005 1 1 54.5 # 4 10006 1 1 54.1 # 5 10007 1 1 57.7 # 6 10008 1 1 62.8 # 7 10010 0 1 63.7 # 8 10011 1 1 73.1 # 9 10017 1 1 56.7 # 10 10018 0 1 66.6 # # ... with 4,193 more rows as_factor(SPSS_data) # # A tibble: 4,203 x 4 # v001 sex status statusage # # 1 10002 Male alive 76.6 # 2 10004 Female alive 59.1 # 3 10005 Male alive 54.5 # 4 10006 Male alive 54.1 # 5 10007 Male alive 57.7 # 6 10008 Male alive 62.8 # 7 10010 Female alive 63.7 # 8 10011 Male alive 73.1 # 9 10017 Male alive 56.7 # 10 10018 Female alive 66.6 # # ... with 4,193 more rows"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"base-r","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata","what":"Base R","title":"How to import data from SPSS / SAS / Stata","text":"import data SPSS, SAS Stata, can use great haven package : can now import files follows:","code":"# download and install the latest version: install.packages(\"haven\") # load the package you just installed: library(haven)"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"spss","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata > Base R","what":"SPSS","title":"How to import data from SPSS / SAS / Stata","text":"read files SPSS R: forget as_factor(), mentioned . export R objects SPSS file format:","code":"# read any SPSS file based on file extension (best way): read_spss(file = \"path/to/file\") # read .sav or .zsav file: read_sav(file = \"path/to/file\") # read .por file: read_por(file = \"path/to/file\") # save as .sav file: write_sav(data = yourdata, path = \"path/to/file\") # save as compressed .zsav file: write_sav(data = yourdata, path = \"path/to/file\", compress = TRUE)"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"sas","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata > Base R","what":"SAS","title":"How to import data from SPSS / SAS / Stata","text":"read files SAS R: export R objects SAS file format:","code":"# read .sas7bdat + .sas7bcat files: read_sas(data_file = \"path/to/file\", catalog_file = NULL) # read SAS transport files (version 5 and version 8): read_xpt(file = \"path/to/file\") # save as regular SAS file: write_sas(data = yourdata, path = \"path/to/file\") # the SAS transport format is an open format # (required for submission of the data to the FDA) write_xpt(data = yourdata, path = \"path/to/file\", version = 8)"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"stata","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata > Base R","what":"Stata","title":"How to import data from SPSS / SAS / Stata","text":"read files Stata R: export R objects Stata file format:","code":"# read .dta file: read_stata(file = \"/path/to/file\") # works exactly the same: read_dta(file = \"/path/to/file\") # save as .dta file, Stata version 14: # (supports Stata v8 until v15 at the time of writing) write_dta(data = yourdata, path = \"/path/to/file\", version = 14)"},{"path":"https://msberends.github.io/AMR/articles/WHONET.html","id":"import-of-data","dir":"Articles","previous_headings":"","what":"Import of data","title":"How to work with WHONET data","text":"tutorial assumes already imported WHONET data e.g. readxl package. RStudio, can done using menu button ‘Import Dataset’ tab ‘Environment’. Choose option ‘Excel’ select exported file. Make sure date fields imported correctly. example syntax look like : package comes example data set WHONET. use analysis.","code":"library(readxl) data <- read_excel(path = \"path/to/your/file.xlsx\")"},{"path":"https://msberends.github.io/AMR/articles/WHONET.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"How to work with WHONET data","text":"First, load relevant packages yet . use tidyverse analyses. . don’t know yet, suggest read website: https://www.tidyverse.org/. transform variables simplify automate analysis: Microorganisms transformed microorganism codes (called mo) using Catalogue Life reference data set, contains ~70,000 microorganisms taxonomic kingdoms Bacteria, Fungi Protozoa. tranformation .mo(). function also recognises almost WHONET abbreviations microorganisms. Antimicrobial results interpretations clean valid. words, contain values \"S\", \"\" \"R\". exactly .rsi() function . errors warnings, values transformed succesfully. also created package dedicated data cleaning checking, called cleaner package. freq() function can used create frequency tables. let’s check data, couple frequency tables: Frequency table Class: character Length: 500 Available: 500 (100.0%, NA: 0 = 0.0%) Unique: 37 Shortest: 11 Longest: 40 (omitted 27 entries, n = 56 [11.20%]) Frequency table Class: factor > ordered > rsi (numeric) Length: 500 Levels: 3: S < < R Available: 481 (96.2%, NA: 19 = 3.8%) Unique: 3 Drug: Amoxicillin/clavulanic acid (AMC, J01CR02) Drug group: Beta-lactams/penicillins %SI: 78.59%","code":"library(dplyr) # part of tidyverse library(ggplot2) # part of tidyverse library(AMR) # this package library(cleaner) # to create frequency tables # transform variables data <- WHONET %>% # get microbial ID based on given organism mutate(mo = as.mo(Organism)) %>% # transform everything from \"AMP_ND10\" to \"CIP_EE\" to the new `rsi` class mutate_at(vars(AMP_ND10:CIP_EE), as.rsi) # our newly created `mo` variable, put in the mo_name() function data %>% freq(mo_name(mo), nmax = 10) # our transformed antibiotic columns # amoxicillin/clavulanic acid (J01CR02) as an example data %>% freq(AMC_ND2)"},{"path":"https://msberends.github.io/AMR/articles/WHONET.html","id":"a-first-glimpse-at-results","dir":"Articles","previous_headings":"","what":"A first glimpse at results","title":"How to work with WHONET data","text":"easy ggplot already give lot information, using included ggplot_rsi() function:","code":"data %>% group_by(Country) %>% select(Country, AMP_ND2, AMC_ED20, CAZ_ED10, CIP_ED5) %>% ggplot_rsi(translate_ab = 'ab', facet = \"Country\", datalabels = FALSE)"},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"microorganisms-currently-accepted-names","dir":"Articles","previous_headings":"","what":"Microorganisms (currently accepted names)","title":"Data sets for download / own use","text":"data set 70,764 rows 16 columns, containing following column names:mo, fullname, kingdom, phylum, class, order, family, genus, species, subspecies, rank, ref, species_id, source, prevalence snomed. data set R available microorganisms, load AMR package. last updated 21 August 2022 15:23:37 UTC. Find info structure data set . Direct download links: Download R file (1.3 MB) Download Excel file (4.8 MB) Download plain text file (13.1 MB) Download SAS file (30.7 MB) Download SPSS file (16.3 MB) Download Stata file (27.5 MB) NOTE: exported files SAS, SPSS Stata contain SNOMED codes, file size exceed 100 MB; file size limit GitHub. Advice? Use R instead.","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source","dir":"Articles","previous_headings":"Microorganisms (currently accepted names)","what":"Source","title":"Data sets for download / own use","text":"full taxonomy microorganisms based authoritative comprehensive: Catalogue Life (included version: 2019) List Prokaryotic names Standing Nomenclature (LPSN, last updated: 5 October 2021) US Edition SNOMED CT 1 September 2020, retrieved Public Health Information Network Vocabulary Access Distribution System (PHIN VADS), OID 2.16.840.1.114222.4.11.1009, version 12","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example-content","dir":"Articles","previous_headings":"Microorganisms (currently accepted names)","what":"Example content","title":"Data sets for download / own use","text":"Included (sub)species per taxonomic kingdom: Example rows filtering genus Escherichia:","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"microorganisms-previously-accepted-names","dir":"Articles","previous_headings":"","what":"Microorganisms (previously accepted names)","title":"Data sets for download / own use","text":"data set 14,338 rows 4 columns, containing following column names:fullname, fullname_new, ref prevalence. Note: remember ‘ref’ columns contains scientific reference old taxonomic entries, .e. column ‘fullname’. scientific reference new names, .e. column ‘fullname_new’, see microorganisms data set. data set R available microorganisms.old, load AMR package. last updated 21 August 2022 15:23:37 UTC. Find info structure data set . Direct download links: Download R file (0.2 MB) Download Excel file (0.5 MB) Download plain text file (1 MB) Download SAS file (2.1 MB) Download SPSS file (1.3 MB) Download Stata file (2 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-1","dir":"Articles","previous_headings":"Microorganisms (previously accepted names)","what":"Source","title":"Data sets for download / own use","text":"data set contains old, previously accepted taxonomic names. data sources microorganisms data set: Catalogue Life (included version: 2019) List Prokaryotic names Standing Nomenclature (LPSN, last updated: 5 October 2021)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example-content-1","dir":"Articles","previous_headings":"Microorganisms (previously accepted names)","what":"Example content","title":"Data sets for download / own use","text":"Example rows filtering Escherichia:","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"antibiotic-agents","dir":"Articles","previous_headings":"","what":"Antibiotic agents","title":"Data sets for download / own use","text":"data set 464 rows 14 columns, containing following column names:ab, cid, name, group, atc, atc_group1, atc_group2, abbreviations, synonyms, oral_ddd, oral_units, iv_ddd, iv_units loinc. data set R available antibiotics, load AMR package. last updated 21 August 2022 15:23:37 UTC. Find info structure data set . Direct download links: Download R file (33 kB) Download Excel file (65 kB) Download plain text file (0.1 MB) Download SAS file (1.8 MB) Download SPSS file (0.3 MB) Download Stata file (0.3 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-2","dir":"Articles","previous_headings":"Antibiotic agents","what":"Source","title":"Data sets for download / own use","text":"data set contains EARS-Net ATC codes gathered WHONET, compound IDs PubChem. also contains brand names (synonyms) found PubChem Defined Daily Doses (DDDs) oral parenteral administration. ATC/DDD index Collaborating Centre Drug Statistics Methodology (note: may used commercial purposes, freely available CC website personal use) PubChem US National Library Medicine WHONET software 2019","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"antiviral-agents","dir":"Articles","previous_headings":"","what":"Antiviral agents","title":"Data sets for download / own use","text":"data set 102 rows 9 columns, containing following column names:atc, cid, name, atc_group, synonyms, oral_ddd, oral_units, iv_ddd iv_units. data set R available antivirals, load AMR package. last updated 21 August 2022 15:23:37 UTC. Find info structure data set . Direct download links: Download R file (5 kB) Download Excel file (14 kB) Download plain text file (16 kB) Download SAS file (80 kB) Download SPSS file (68 kB) Download Stata file (67 kB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-3","dir":"Articles","previous_headings":"Antiviral agents","what":"Source","title":"Data sets for download / own use","text":"data set contains ATC codes gathered compound IDs PubChem. also contains brand names (synonyms) found PubChem Defined Daily Doses (DDDs) oral parenteral administration. ATC/DDD index Collaborating Centre Drug Statistics Methodology (note: may used commercial purposes, freely available CC website personal use) PubChem US National Library Medicine","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"interpretation-from-mic-values-disk-diameters-to-rsi","dir":"Articles","previous_headings":"","what":"Interpretation from MIC values / disk diameters to R/SI","title":"Data sets for download / own use","text":"data set 20,369 rows 11 columns, containing following column names:guideline, method, site, mo, rank_index, ab, ref_tbl, disk_dose, breakpoint_S, breakpoint_R uti. data set R available rsi_translation, load AMR package. last updated 21 August 2022 15:23:37 UTC. Find info structure data set . Direct download links: Download R file (49 kB) Download Excel file (0.9 MB) Download plain text file (2 MB) Download SAS file (4 MB) Download SPSS file (2.6 MB) Download Stata file (3.8 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-4","dir":"Articles","previous_headings":"Interpretation from MIC values / disk diameters to R/SI","what":"Source","title":"Data sets for download / own use","text":"data set contains interpretation rules MIC values disk diffusion diameters. Included guidelines CLSI (2011-2022) EUCAST (2011-2022).","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"intrinsic-bacterial-resistance","dir":"Articles","previous_headings":"","what":"Intrinsic bacterial resistance","title":"Data sets for download / own use","text":"data set 134,956 rows 2 columns, containing following column names:mo ab. data set R available intrinsic_resistant, load AMR package. last updated 21 August 2022 15:23:37 UTC. Find info structure data set . Direct download links: Download R file (78 kB) Download Excel file (1.3 MB) Download plain text file (5.1 MB) Download SAS file (10.4 MB) Download SPSS file (7.4 MB) Download Stata file (10.2 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-5","dir":"Articles","previous_headings":"Intrinsic bacterial resistance","what":"Source","title":"Data sets for download / own use","text":"data set contains defined intrinsic resistance EUCAST bug-drug combinations, based ‘EUCAST Expert Rules’ ‘EUCAST Intrinsic Resistance Unusual Phenotypes’ v3.3 (2021).","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example-content-5","dir":"Articles","previous_headings":"Intrinsic bacterial resistance","what":"Example content","title":"Data sets for download / own use","text":"Example rows filtering Enterobacter cloacae:","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"dosage-guidelines-from-eucast","dir":"Articles","previous_headings":"","what":"Dosage guidelines from EUCAST","title":"Data sets for download / own use","text":"data set 169 rows 9 columns, containing following column names:ab, name, type, dose, dose_times, administration, notes, original_txt eucast_version. data set R available dosage, load AMR package. last updated 21 August 2022 15:23:37 UTC. Find info structure data set . Direct download links: Download R file (3 kB) Download Excel file (14 kB) Download plain text file (15 kB) Download SAS file (52 kB) Download SPSS file (45 kB) Download Stata file (44 kB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-6","dir":"Articles","previous_headings":"Dosage guidelines from EUCAST","what":"Source","title":"Data sets for download / own use","text":"EUCAST breakpoints used package based dosages data set. Currently included dosages data set meant : ‘EUCAST Clinical Breakpoint Tables’ v11.0 (2021).","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/resistance_predict.html","id":"needed-r-packages","dir":"Articles","previous_headings":"","what":"Needed R packages","title":"How to predict antimicrobial resistance","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. AMR package depends packages even extends use functions.","code":"library(dplyr) library(ggplot2) library(AMR) # (if not yet installed, install with:) # install.packages(c(\"tidyverse\", \"AMR\"))"},{"path":"https://msberends.github.io/AMR/articles/resistance_predict.html","id":"prediction-analysis","dir":"Articles","previous_headings":"","what":"Prediction analysis","title":"How to predict antimicrobial resistance","text":"package contains function resistance_predict(), takes input functions AMR data analysis. Based date column, calculates cases per year uses regression model predict antimicrobial resistance. basically easy : function look date column col_date set. running commands, summary regression model printed unless using resistance_predict(..., info = FALSE). text printed summary - actual result (output) function data.frame containing year: number observations, actual observed resistance, estimated resistance standard error estimation: function plot available base R, can extended packages depend output based type input. extended function cope resistance predictions: fastest way plot result. automatically adds right axes, error bars, titles, number available observations type model. also support ggplot2 package custom function ggplot_rsi_predict() create appealing plots:","code":"# resistance prediction of piperacillin/tazobactam (TZP): resistance_predict(tbl = example_isolates, col_date = \"date\", col_ab = \"TZP\", model = \"binomial\") # or: example_isolates %>% resistance_predict(col_ab = \"TZP\", model \"binomial\") # to bind it to object 'predict_TZP' for example: predict_TZP <- example_isolates %>% resistance_predict(col_ab = \"TZP\", model = \"binomial\") predict_TZP # year value se_min se_max observations observed estimated # 1 2002 0.20000000 NA NA 15 0.20000000 0.05616378 # 2 2003 0.06250000 NA NA 32 0.06250000 0.06163839 # 3 2004 0.08536585 NA NA 82 0.08536585 0.06760841 # 4 2005 0.05000000 NA NA 60 0.05000000 0.07411100 # 5 2006 0.05084746 NA NA 59 0.05084746 0.08118454 # 6 2007 0.12121212 NA NA 66 0.12121212 0.08886843 # 7 2008 0.04166667 NA NA 72 0.04166667 0.09720264 # 8 2009 0.01639344 NA NA 61 0.01639344 0.10622731 # 9 2010 0.05660377 NA NA 53 0.05660377 0.11598223 # 10 2011 0.18279570 NA NA 93 0.18279570 0.12650615 # 11 2012 0.30769231 NA NA 65 0.30769231 0.13783610 # 12 2013 0.06896552 NA NA 58 0.06896552 0.15000651 # 13 2014 0.10000000 NA NA 60 0.10000000 0.16304829 # 14 2015 0.23636364 NA NA 55 0.23636364 0.17698785 # 15 2016 0.22619048 NA NA 84 0.22619048 0.19184597 # 16 2017 0.16279070 NA NA 86 0.16279070 0.20763675 # 17 2018 0.22436641 0.1938710 0.2548618 NA NA 0.22436641 # 18 2019 0.24203228 0.2062911 0.2777735 NA NA 0.24203228 # 19 2020 0.26062172 0.2191758 0.3020676 NA NA 0.26062172 # 20 2021 0.28011130 0.2325557 0.3276669 NA NA 0.28011130 # 21 2022 0.30046606 0.2464567 0.3544755 NA NA 0.30046606 # 22 2023 0.32163907 0.2609011 0.3823771 NA NA 0.32163907 # 23 2024 0.34357130 0.2759081 0.4112345 NA NA 0.34357130 # 24 2025 0.36619175 0.2914934 0.4408901 NA NA 0.36619175 # 25 2026 0.38941799 0.3076686 0.4711674 NA NA 0.38941799 # 26 2027 0.41315710 0.3244399 0.5018743 NA NA 0.41315710 # 27 2028 0.43730688 0.3418075 0.5328063 NA NA 0.43730688 # 28 2029 0.46175755 0.3597639 0.5637512 NA NA 0.46175755 # 29 2030 0.48639359 0.3782932 0.5944939 NA NA 0.48639359 # 30 2031 0.51109592 0.3973697 0.6248221 NA NA 0.51109592 # 31 2032 0.53574417 0.4169574 0.6545309 NA NA 0.53574417 plot(predict_TZP) ggplot_rsi_predict(predict_TZP) # choose for error bars instead of a ribbon ggplot_rsi_predict(predict_TZP, ribbon = FALSE)"},{"path":"https://msberends.github.io/AMR/articles/resistance_predict.html","id":"choosing-the-right-model","dir":"Articles","previous_headings":"Prediction analysis","what":"Choosing the right model","title":"How to predict antimicrobial resistance","text":"Resistance easily predicted; look vancomycin resistance Gram-positive bacteria, spread (.e. standard error) enormous: Vancomycin resistance 100% ten years, might remain low. can define model model parameter. model chosen generalised linear regression model using binomial distribution, assuming period zero resistance followed period increasing resistance leading slowly resistance. Valid values : vancomycin resistance Gram-positive bacteria, linear model might appropriate: model also available object, attribute:","code":"example_isolates %>% filter(mo_gramstain(mo, language = NULL) == \"Gram-positive\") %>% resistance_predict(col_ab = \"VAN\", year_min = 2010, info = FALSE, model = \"binomial\") %>% ggplot_rsi_predict() # ℹ Using column 'date' as input for `col_date`. example_isolates %>% filter(mo_gramstain(mo, language = NULL) == \"Gram-positive\") %>% resistance_predict(col_ab = \"VAN\", year_min = 2010, info = FALSE, model = \"linear\") %>% ggplot_rsi_predict() # ℹ Using column 'date' as input for `col_date`. model <- attributes(predict_TZP)$model summary(model)$family # # Family: binomial # Link function: logit summary(model)$coefficients # Estimate Std. Error z value Pr(>|z|) # (Intercept) -200.67944891 46.17315349 -4.346237 1.384932e-05 # year 0.09883005 0.02295317 4.305725 1.664395e-05"},{"path":"https://msberends.github.io/AMR/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Matthijs S. Berends. Author, maintainer. Christian F. Luz. Author, contributor. Dennis Souverein. Author, contributor. Erwin E. . Hassing. Author, contributor. Casper Albers. Thesis advisor. Peter Dutey-Magni. Contributor. Judith Fonville. Contributor. Alex Friedrich. Thesis advisor. Corinna Glasner. Thesis advisor. Eric Hazenberg. Contributor. Gwen Knight. Contributor. Annick Lenglet. Contributor. Bart Meijer. Contributor. Anton Mymrikov. Contributor. Sofia Ny. Contributor. Rogier Schade. Contributor. Bhanu Sinha. Thesis advisor. Anthony Underwood. Contributor.","code":""},{"path":"https://msberends.github.io/AMR/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C (2021). AMR - R Package Working Antimicrobial Resistance Data. Journal Statistical Software (accepted publication), https://www.biorxiv.org/content/10.1101/810622, doi: 10.1101/810622. Berends, MS (2021). New Instrument Microbial Epidemiology: Empowering Antimicrobial Resistance Data Analysis (PhD thesis). University Groningen, doi: 10.33612/diss.177417131. Luz, CF (2021). Data Science Infection Management & Antimicrobial Stewardship (PhD thesis). University Groningen, doi: 10.33612/diss.192486375.","code":"@Article{, title = {AMR - An R Package for Working with Antimicrobial Resistance Data}, author = {M S Berends and C F Luz and A W Friedrich and B N M Sinha and C J Albers and C Glasner}, doi = {10.1101/810622}, journal = {Journal of Statistical Software}, pages = {Accepted for publication}, year = {2021}, url = {https://www.biorxiv.org/content/10.1101/810622}, } @PhdThesis{, title = {A New Instrument for Microbial Epidemiology: Empowering Antimicrobial Resistance Data Analysis}, author = {M S Berends}, publisher = {University of Groningen}, school = {University of Groningen}, doi = {10.33612/diss.177417131}, pages = {287}, year = {2021}, } @PhdThesis{, title = {Data Science for Infection Management & Antimicrobial Stewardship}, author = {C F Luz}, publisher = {University of Groningen}, school = {University of Groningen}, doi = {10.33612/diss.192486375}, pages = {326}, year = {2021}, }"},{"path":[]},{"path":"https://msberends.github.io/AMR/index.html","id":"introduction","dir":"","previous_headings":"","what":"Introduction","title":"Antimicrobial Resistance Data Analysis","text":"AMR package free open-source R package zero dependencies simplify analysis prediction Antimicrobial Resistance (AMR) work microbial antimicrobial data properties, using evidence-based methods. aim provide standard clean reproducible AMR data analysis, can therefore empower epidemiological analyses continuously enable surveillance treatment evaluation setting. rationale behind package scientifically described Journal Statistical Software (Volume xx, Issue xx; DOI 10.18637/jss.v000.i00 - waiting copy-editing finish). installing package, R knows ~71,000 distinct microbial species ~570 antibiotic, antimycotic antiviral drugs name code (including ATC, WHONET/EARS-Net, PubChem, LOINC SNOMED CT), knows valid R/SI MIC values. supports data format, including WHONET/EARS-Net data. package works Windows, macOS Linux versions R since R-3.0 (April 2013). designed work setting, including limited resources. created routine data analysis academic research Faculty Medical Sciences University Groningen, collaboration non-profit organisations Certe Medical Diagnostics Advice Foundation University Medical Center Groningen. R package formed basis two PhD theses (DOI 10.33612/diss.177417131 DOI 10.33612/diss.192486375) actively durably maintained two public healthcare organisations Netherlands.","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"used-in-175-countries-translated-to-16-languages","dir":"","previous_headings":"Introduction","what":"Used in 175 countries, translated to 16 languages","title":"Antimicrobial Resistance Data Analysis","text":"Since first public release early 2018, R package used almost countries world. Click map enlarge see country names. AMR package available English, Chinese, Danish, Dutch, French, German, Greek, Italian, Japanese, Polish, Portuguese, Russian, Spanish, Swedish, Turkish, Ukrainian. Antimicrobial drug (group) names colloquial microorganism names provided languages.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/index.html","id":"filtering-and-selecting-data","dir":"","previous_headings":"Practical examples","what":"Filtering and selecting data","title":"Antimicrobial Resistance Data Analysis","text":"defined row filter Gram-negative bacteria intrinsic resistance cefotaxime (mo_is_gram_negative() mo_is_intrinsic_resistant()) column selection two antibiotic groups (aminoglycosides() carbapenems()), reference data microorganisms antibiotics AMR package make sure get meant: base R equivalent : base R snippet work version R since April 2013 (R-3.0).","code":"# AMR works great with dplyr, but it's not required or neccesary library(AMR) library(dplyr) example_isolates %>% mutate(bacteria = mo_fullname()) %>% filter(mo_is_gram_negative(), mo_is_intrinsic_resistant(ab = \"cefotax\")) %>% select(bacteria, aminoglycosides(), carbapenems()) example_isolates$bacteria <- mo_fullname(example_isolates$mo) example_isolates[which(mo_is_gram_negative() & mo_is_intrinsic_resistant(ab = \"cefotax\")), c(\"bacteria\", aminoglycosides(), carbapenems())]"},{"path":"https://msberends.github.io/AMR/index.html","id":"calculating-resistance-per-group","dir":"","previous_headings":"Practical examples","what":"Calculating resistance per group","title":"Antimicrobial Resistance Data Analysis","text":"","code":"library(AMR) library(dplyr) out <- example_isolates %>% # group by hospital code: group_by(hospital_id) %>% # calculate AMR using resistance(), over all aminoglycosides # and polymyxins: summarise(across(c(aminoglycosides(), polymyxins()), resistance)) out # transform the antibiotic columns to names: out %>% set_ab_names() # transform the antibiotic column to ATC codes: out %>% set_ab_names(property = \"atc\")"},{"path":"https://msberends.github.io/AMR/index.html","id":"what-else-can-you-do-with-this-package","dir":"","previous_headings":"","what":"What else can you do with this package?","title":"Antimicrobial Resistance Data Analysis","text":"package intended comprehensive toolbox integrated AMR data analysis. package can used : Reference taxonomy microorganisms, since package contains microbial (sub)species Catalogue Life List Prokaryotic names Standing Nomenclature (manual) Interpreting raw MIC disk diffusion values, based latest CLSI EUCAST guidelines (manual) Retrieving antimicrobial drug names, doses forms administration clinical health care records (manual) Determining first isolates used AMR data analysis (manual) Calculating antimicrobial resistance (tutorial) Determining multi-drug resistance (MDR) / multi-drug resistant organisms (MDRO) (tutorial) Calculating (empirical) susceptibility mono therapy combination therapies (tutorial) Predicting future antimicrobial resistance using regression models (tutorial) Getting properties microorganism (like Gram stain, species, genus family) (manual) Getting properties antibiotic (like name, code EARS-Net/ATC/LOINC/PubChem, defined daily dose trade name) (manual) Plotting antimicrobial resistance (tutorial) Applying EUCAST expert rules (manual) Getting SNOMED codes microorganism, getting properties microorganism based SNOMED code (manual) Getting LOINC codes antibiotic, getting properties antibiotic based LOINC code (manual) Machine reading EUCAST CLSI guidelines 2011-2021 translate MIC values disk diffusion diameters R/SI (link) Principal component analysis AMR (tutorial)","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/index.html","id":"latest-official-version","dir":"","previous_headings":"Get this package","what":"Latest official version","title":"Antimicrobial Resistance Data Analysis","text":"package available official R network (CRAN). Install package R CRAN using command: downloaded installed automatically. RStudio, click menu Tools > Install Packages… type “AMR” press Install. Note: functions website may available latest release. use functions data sets mentioned website, install latest development version.","code":"install.packages(\"AMR\")"},{"path":"https://msberends.github.io/AMR/index.html","id":"latest-development-version","dir":"","previous_headings":"Get this package","what":"Latest development version","title":"Antimicrobial Resistance Data Analysis","text":"Please read Developer Guideline . latest unpublished development version can installed GitHub two ways: Manually, using: Automatically, using rOpenSci R-universe platform, adding R-universe address list repositories (‘repos’): , can install update AMR package like official release (e.g., using install.packages(\"AMR\") RStudio via Tools > Check Package Updates…).","code":"install.packages(\"remotes\") # if you haven't already remotes::install_github(\"msberends/AMR\") options(repos = c(getOption(\"repos\"), msberends = \"https://msberends.r-universe.dev\"))"},{"path":"https://msberends.github.io/AMR/index.html","id":"get-started","dir":"","previous_headings":"","what":"Get started","title":"Antimicrobial Resistance Data Analysis","text":"find conduct AMR data analysis, please continue reading get started click link ‘’ menu.","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"partners","dir":"","previous_headings":"","what":"Partners","title":"Antimicrobial Resistance Data Analysis","text":"development package part , related , made possible :","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"copyright","dir":"","previous_headings":"","what":"Copyright","title":"Antimicrobial Resistance Data Analysis","text":"R package free, open-source software licensed GNU General Public License v2.0 (GPL-2). nutshell, means package: May used commercial purposes May used private purposes May used patent purposes May modified, although: Modifications must released license distributing package Changes made code must documented May distributed, although: Source code must made available package distributed copy license copyright notice must included package. Comes LIMITATION liability Comes warranty","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR-deprecated.html","id":null,"dir":"Reference","previous_headings":"","what":"Deprecated Functions — AMR-deprecated","title":"Deprecated Functions — AMR-deprecated","text":"functions -called 'Deprecated'. removed future release. Using functions give warning name function replaced (one).","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":null,"dir":"Reference","previous_headings":"","what":"The AMR Package — AMR","title":"The AMR Package — AMR","text":"Welcome AMR package.","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"The AMR Package — AMR","text":"AMR free, open-source independent R package simplify analysis prediction Antimicrobial Resistance (AMR) work microbial antimicrobial data properties, using evidence-based methods. aim provide standard clean reproducible antimicrobial resistance data analysis, can therefore empower epidemiological analyses continuously enable surveillance treatment evaluation setting. installing package, R knows ~71,000 distinct microbial species ~570 antibiotic, antimycotic antiviral drugs name code (including ATC, EARS-NET, LOINC SNOMED CT), knows valid R/SI MIC values. supports data format, including WHONET/EARS-Net data. package fully independent R package works Windows, macOS Linux versions R since R-3.0.0 (April 2013). designed work setting, including limited resources. created routine data analysis academic research Faculty Medical Sciences University Groningen, collaboration non-profit organisations Certe Medical Diagnostics Advice University Medical Center Groningen. R package actively maintained free software; can freely use distribute personal commercial (patent) purposes terms GNU General Public License version 2.0 (GPL-2), published Free Software Foundation. package can used : Reference taxonomy microorganisms, since package contains microbial (sub)species Catalogue Life List Prokaryotic names Standing Nomenclature Interpreting raw MIC disk diffusion values, based latest CLSI EUCAST guidelines Retrieving antimicrobial drug names, doses forms administration clinical health care records Determining first isolates used AMR data analysis Calculating antimicrobial resistance Determining multi-drug resistance (MDR) / multi-drug resistant organisms (MDRO) Calculating (empirical) susceptibility mono therapy combination therapies Predicting future antimicrobial resistance using regression models Getting properties microorganism (Gram stain, species, genus family) Getting properties antibiotic (name, code EARS-Net/ATC/LOINC/PubChem, defined daily dose trade name) Plotting antimicrobial resistance Applying EUCAST expert rules Getting SNOMED codes microorganism, getting properties microorganism based SNOMED code Getting LOINC codes antibiotic, getting properties antibiotic based LOINC code Machine reading EUCAST CLSI guidelines 2011-2020 translate MIC values disk diffusion diameters R/SI Principal component analysis AMR","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"reference-data-publicly-available","dir":"Reference","previous_headings":"","what":"Reference Data Publicly Available","title":"The AMR Package — AMR","text":"reference data sets (microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.) AMR package publicly freely available. continually export data sets formats use R, SPSS, SAS, Stata Excel. also supply flat files machine-readable suitable input software program, laboratory information systems. Please find download links website, automatically updated every code change.","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"read-more-on-our-website-","dir":"Reference","previous_headings":"","what":"Read more on Our Website!","title":"The AMR Package — AMR","text":"website https://msberends.github.io/AMR/ can find comprehensive tutorial conduct AMR data analysis, complete documentation functions example analysis using WHONET data.","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"contact-us","dir":"Reference","previous_headings":"","what":"Contact Us","title":"The AMR Package — AMR","text":"suggestions, comments questions, please contact us : Matthijs S. Berends m.s.berends [] umcg [dot] nl University Groningen Department Medical Microbiology Infection Prevention University Medical Center Groningen Post Office Box 30001 9700 RB Groningen Netherlands https://msberends.github.io/AMR/ found bug, please file new issue : https://github.com/msberends/AMR/issues","code":""},{"path":"https://msberends.github.io/AMR/reference/WHOCC.html","id":null,"dir":"Reference","previous_headings":"","what":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","title":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","text":"antimicrobial drugs official names, ATC codes, ATC groups defined daily dose (DDD) included package, using Collaborating Centre Drug Statistics Methodology.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHOCC.html","id":"whocc","dir":"Reference","previous_headings":"","what":"WHOCC","title":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","text":"package contains ~550 antibiotic, antimycotic antiviral drugs Anatomical Therapeutic Chemical (ATC) codes, ATC groups Defined Daily Dose (DDD) World Health Organization Collaborating Centre Drug Statistics Methodology (WHOCC, https://www.whocc.) Pharmaceuticals Community Register European Commission (https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm). become gold standard international drug utilisation monitoring research. WHOCC located Oslo Norwegian Institute Public Health funded Norwegian government. European Commission executive European Union promotes general interest. NOTE: WHOCC copyright allow use commercial purposes, unlike info package. See https://www.whocc./copyright_disclaimer/.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHOCC.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","text":"","code":"as.ab(\"meropenem\") #> Class #> [1] MEM ab_name(\"J01DH02\") #> [1] \"Meropenem\" ab_tradenames(\"flucloxacillin\") #> [1] \"floxacillin\" \"floxapen\" \"floxapen sodium salt\" #> [4] \"fluclox\" \"flucloxacilina\" \"flucloxacillin\" #> [7] \"flucloxacilline\" \"flucloxacillinum\" \"fluorochloroxacillin\""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":null,"dir":"Reference","previous_headings":"","what":"Data Set with 500 Isolates - WHONET Example — WHONET","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"example data set exact structure export file WHONET. files can used package, example data set shows. antibiotic results example_isolates data set. patient names created using online surname generators place practice purposes.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"","code":"WHONET"},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"data.frame 500 observations 53 variables: Identification number ID sample Specimen number ID specimen Organism Name microorganism. analysis, transform valid microbial class, using .mo(). Country Country origin Laboratory Name laboratory Last name Fictitious last name patient First name Fictitious initial patient Sex Fictitious gender patient Age Fictitious age patient Age category Age group, can also looked using age_groups() Date admissionDate hospital admission Specimen dateDate specimen received laboratory Specimen type Specimen type group Specimen type (Numeric) Translation \"Specimen type\" Reason Reason request Differential Diagnosis Isolate number ID isolate Organism type Type microorganism, can also looked using mo_type() Serotype Serotype microorganism Beta-lactamase Microorganism produces beta-lactamase? ESBL Microorganism produces extended spectrum beta-lactamase? Carbapenemase Microorganism produces carbapenemase? MRSA screening test Microorganism possible MRSA? Inducible clindamycin resistance Clindamycin can induced? Comment comments Date data entryDate data entered WHONET AMP_ND10:CIP_EE 28 different antibiotics. can lookup abbreviations antibiotics data set, use e.g. ab_name(\"AMP\") get official name immediately. analysis, transform valid antibiotic class, using .rsi().","code":""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"reference-data-publicly-available","dir":"Reference","previous_headings":"","what":"Reference Data Publicly Available","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"reference data sets (microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.) AMR package publicly freely available. continually export data sets formats use R, SPSS, SAS, Stata Excel. also supply flat files machine-readable suitable input software program, laboratory information systems. Please find download links website, automatically updated every code change.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"","code":"head(WHONET) #> Identification number Specimen number Organism Country #> 1 fe41d7bafa 1748 SPN Belgium #> 2 91f175ec37 1767 eco The Netherlands #> 3 cc4015056e 1343 eco The Netherlands #> 4 e864b692f5 1894 MAP Denmark #> 5 3d051fe345 1739 PVU Belgium #> 6 c80762a08d 1846 103 The Netherlands #> Laboratory Last name First name Sex Age #> 1 National Laboratory of Belgium Abel B. F 68 #> 2 National Laboratory of The Netherlands Delacroix F. M 89 #> 3 National Laboratory of The Netherlands Steensen F. M 85 #> 4 National Laboratory of Denmark Beyersdorf L. M 62 #> 5 National Laboratory of Belgium Hummel W. M 86 #> 6 National Laboratory of The Netherlands Eikenboom J. F 53 #> Age category Date of admission Specimen date Specimen type #> 1 55-74 2005-01-12 2005-01-30 Urine #> 2 75+ 2006-07-30 2006-08-16 Urine #> 3 75+ 2014-03-05 2014-03-14 Urine #> 4 55-74 2014-10-22 2014-11-01 Urine #> 5 75+ 2016-10-28 2016-11-17 Urine #> 6 25-54 2017-12-21 2018-01-02 Urine #> Specimen type (Numeric) Reason Isolate number Organism type Serotype #> 1 2 Unknown 1748 Bacteria #> 2 2 Unknown 1767 Bacteria #> 3 2 Unknown 1343 Bacteria #> 4 2 Unknown 1894 Bacteria #> 5 2 Unknown 1739 Bacteria #> 6 2 Unknown 1846 Bacteria #> Beta-lactamase ESBL Carbapenemase MRSA screening test #> 1 FALSE FALSE FALSE FALSE #> 2 FALSE FALSE FALSE FALSE #> 3 FALSE FALSE FALSE FALSE #> 4 FALSE FALSE FALSE FALSE #> 5 FALSE FALSE FALSE FALSE #> 6 FALSE FALSE FALSE FALSE #> Inducible clindamycin resistance Comment Date of data entry AMP_ND10 AMC_ED20 #> 1 FALSE 2005-01-30 S S #> 2 FALSE 2006-08-16 S #> 3 FALSE 2014-03-14 S S #> 4 FALSE 2014-11-01 R #> 5 FALSE 2016-11-17 R R #> 6 FALSE 2018-01-02 S S #> TZP_ED30 FEP_ED30 CTX_ED5 FOX_ED30 CAZ_ED10 CRO_ED30 CIP_ED5 AMK_ED30 #> 1 S R #> 2 R #> 3 S #> 4 R #> 5 S S R S S S #> 6 S S S S S S #> GEN_ED10 TOB_ED10 SXT_ED1.2 IPM_ND10 PEN_ND1 AMP_ND2 AMC_ND2 CHL_ND30 VAN_ED5 #> 1 R R S S S S S #> 2 S R R S S #> 3 S S S #> 4 R R R R #> 5 S S R I R R R R #> 6 S S S S R S S R #> OXA_ED1 ERY_ED15 CLI_ED2 TCY_ED30 RIF_ED5 PEN_EE AMP_EE CRO_EE CIP_EE #> 1 S S S S #> 2 S S S R #> 3 S S S #> 4 S R R #> 5 R R R R R S S #> 6 R R R S S S"},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":null,"dir":"Reference","previous_headings":"","what":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"Use function e.g. clinical texts health care records. returns list antimicrobial drugs, doses forms administration found texts.","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"","code":"ab_from_text( text, type = c(\"drug\", \"dose\", \"administration\"), collapse = NULL, translate_ab = FALSE, thorough_search = NULL, info = interactive(), ... )"},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"text text analyse type type property search , either \"drug\", \"dose\" \"administration\", see Examples collapse character pass paste(, collapse = ...) return one character per element text, see Examples translate_ab type = \"drug\": column name antibiotics data set translate antibiotic abbreviations , using ab_property(). Defaults FALSE. Using TRUE equal using \"name\". thorough_search logical indicate whether input must extensively searched misspelling faulty input values. Setting TRUE take considerably time using FALSE. default, turn TRUE input elements contain maximum three words. info logical indicate whether progress bar printed, defaults TRUE interactive mode ... arguments passed .ab()","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"list, character collapse NULL","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"function also internally used .ab(), although searches first drug name throw note drug names returned. Note: .ab() function may use long regular expression match brand names antimicrobial agents. may fail systems.","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"argument-type","dir":"Reference","previous_headings":"","what":"Argument type","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"default, function search antimicrobial drug names. text elements searched official names, ATC codes brand names. uses .ab() internally, correct misspelling. type = \"dose\" (similar, like \"dosing\", \"doses\"), text elements searched numeric values higher 100 resemble years. output numeric. supports unit (g, mg, IE, etc.) multiple values one clinical text, see Examples. type = \"administration\" (abbreviations, like \"admin\", \"adm\"), text elements searched form drug administration. supports following forms (including common abbreviations): buccal, implant, inhalation, instillation, intravenous, nasal, oral, parenteral, rectal, sublingual, transdermal vaginal. Abbreviations oral ('po', 'per os') become \"oral\", values intravenous ('iv', 'intraven') become \"iv\". supports multiple values one clinical text, see Examples.","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"argument-collapse","dir":"Reference","previous_headings":"","what":"Argument collapse","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"Without using collapse, function return list. can convenient use e.g. inside mutate()):df %>% mutate(abx = ab_from_text(clinical_text)) returned AB codes can transformed official names, groups, etc. ab_* functions ab_name() ab_group(), using translate_ab argument. using collapse, function return character:df %>% mutate(abx = ab_from_text(clinical_text, collapse = \"|\"))","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"","code":"# mind the bad spelling of amoxicillin in this line, # straight from a true health care record: ab_from_text(\"28/03/2020 regular amoxicilliin 500mg po tds\") #> [[1]] #> Class #> [1] AMX #> ab_from_text(\"500 mg amoxi po and 400mg cipro iv\") #> [[1]] #> Class #> [1] AMX CIP #> ab_from_text(\"500 mg amoxi po and 400mg cipro iv\", type = \"dose\") #> [[1]] #> [1] 500 400 #> ab_from_text(\"500 mg amoxi po and 400mg cipro iv\", type = \"admin\") #> [[1]] #> [1] \"oral\" \"iv\" #> ab_from_text(\"500 mg amoxi po and 400mg cipro iv\", collapse = \", \") #> [1] \"AMX, CIP\" # \\donttest{ # if you want to know which antibiotic groups were administered, do e.g.: abx <- ab_from_text(\"500 mg amoxi po and 400mg cipro iv\") ab_group(abx[[1]]) #> [1] \"Beta-lactams/penicillins\" \"Quinolones\" if (require(\"dplyr\")) { tibble(clinical_text = c(\"given 400mg cipro and 500 mg amox\", \"started on doxy iv today\")) %>% mutate(abx_codes = ab_from_text(clinical_text), abx_doses = ab_from_text(clinical_text, type = \"doses\"), abx_admin = ab_from_text(clinical_text, type = \"admin\"), abx_coll = ab_from_text(clinical_text, collapse = \"|\"), abx_coll_names = ab_from_text(clinical_text, collapse = \"|\", translate_ab = \"name\"), abx_coll_doses = ab_from_text(clinical_text, type = \"doses\", collapse = \"|\"), abx_coll_admin = ab_from_text(clinical_text, type = \"admin\", collapse = \"|\")) } #> Loading required package: dplyr #> #> Attaching package: ‘dplyr’ #> The following objects are masked from ‘package:stats’: #> #> filter, lag #> The following objects are masked from ‘package:base’: #> #> intersect, setdiff, setequal, union #> # A tibble: 2 × 8 #> clinical_text abx_c…¹ abx_d…² abx_a…³ abx_c…⁴ abx_c…⁵ abx_c…⁶ abx_c…⁷ #> #> 1 given 400mg cipro and… CIP|AMX Ciprof… 400|500 NA #> 2 started on doxy iv to… DOX Doxycy… NA iv #> # … with abbreviated variable names ¹abx_codes, ²abx_doses, ³abx_admin, #> # ⁴abx_coll, ⁵abx_coll_names, ⁶abx_coll_doses, ⁷abx_coll_admin # }"},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Properties of an Antibiotic — ab_property","title":"Get Properties of an Antibiotic — ab_property","text":"Use functions return specific property antibiotic antibiotics data set. input values evaluated internally .ab().","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Properties of an Antibiotic — ab_property","text":"","code":"ab_name(x, language = get_AMR_locale(), tolower = FALSE, ...) ab_cid(x, ...) ab_synonyms(x, ...) ab_tradenames(x, ...) ab_group(x, language = get_AMR_locale(), ...) ab_atc(x, only_first = FALSE, ...) ab_atc_group1(x, language = get_AMR_locale(), ...) ab_atc_group2(x, language = get_AMR_locale(), ...) ab_loinc(x, ...) ab_ddd(x, administration = \"oral\", ...) ab_ddd_units(x, administration = \"oral\", ...) ab_info(x, language = get_AMR_locale(), ...) ab_url(x, open = FALSE, ...) ab_property(x, property = \"name\", language = get_AMR_locale(), ...) set_ab_names( data, ..., property = \"name\", language = get_AMR_locale(), snake_case = NULL )"},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Properties of an Antibiotic — ab_property","text":"x (vector ) text can coerced valid antibiotic code .ab() language language returned text, defaults system language (see get_AMR_locale()) can also set getOption(\"AMR_locale\"). Use language = NULL language = \"\" prevent translation. tolower logical indicate whether first character every output transformed lower case character. lead e.g. \"polymyxin B\" \"polymyxin b\". ... case set_ab_names() data data.frame: variables select (supports tidy selection column1:column4), otherwise arguments passed .ab() only_first logical indicate whether first ATC code must returned, giving preference J0-codes (.e., antimicrobial drug group) administration way administration, either \"oral\" \"iv\" open browse URL using utils::browseURL() property one column names one antibiotics data set: vector_or(colnames(antibiotics), sort = FALSE). data data.frame columns need renamed, character vector column names snake_case logical indicate whether names -called snake case: lower case spaces/slashes replaced underscore (_)","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Properties of an Antibiotic — ab_property","text":"integer case ab_cid() named list case ab_info() multiple ab_atc()/ab_synonyms()/ab_tradenames() double case ab_ddd() data.frame case set_ab_names() character cases","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Properties of an Antibiotic — ab_property","text":"output translated possible. function ab_url() return direct URL official website. warning returned required ATC code available. function set_ab_names() special column renaming function data.frames. renames columns names resemble antimicrobial drugs. always makes sure new column names unique. property = \"atc\" set, preference given ATC codes J-group.","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Get Properties of an Antibiotic — ab_property","text":"World Health Organization () Collaborating Centre Drug Statistics Methodology: https://www.whocc./atc_ddd_index/ European Commission Public Health PHARMACEUTICALS - COMMUNITY REGISTER: https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"reference-data-publicly-available","dir":"Reference","previous_headings":"","what":"Reference Data Publicly Available","title":"Get Properties of an Antibiotic — ab_property","text":"reference data sets (microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.) AMR package publicly freely available. continually export data sets formats use R, SPSS, SAS, Stata Excel. also supply flat files machine-readable suitable input software program, laboratory information systems. Please find download links website, automatically updated every code change.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get Properties of an Antibiotic — ab_property","text":"","code":"# all properties: ab_name(\"AMX\") # \"Amoxicillin\" #> [1] \"Amoxicillin\" ab_atc(\"AMX\") # \"J01CA04\" (ATC code from the WHO) #> [1] \"J01CA04\" ab_cid(\"AMX\") # 33613 (Compound ID from PubChem) #> [1] 33613 ab_synonyms(\"AMX\") # a list with brand names of amoxicillin #> [1] \"actimoxi\" \"amoclen\" \"amolin\" #> [4] \"amopen\" \"amopenixin\" \"amoxibiotic\" #> [7] \"amoxicaps\" \"amoxicilina\" \"amoxicillin\" #> [10] \"amoxicilline\" \"amoxicillinum\" \"amoxiden\" #> [13] \"amoxil\" \"amoxivet\" \"amoxy\" #> [16] \"amoxycillin\" \"anemolin\" \"aspenil\" #> [19] \"biomox\" \"bristamox\" \"cemoxin\" #> [22] \"clamoxyl\" \"delacillin\" \"dispermox\" #> [25] \"efpenix\" \"flemoxin\" \"hiconcil\" #> [28] \"histocillin\" \"hydroxyampicillin\" \"ibiamox\" #> [31] \"imacillin\" \"lamoxy\" \"metafarma capsules\" #> [34] \"metifarma capsules\" \"moxacin\" \"moxatag\" #> [37] \"ospamox\" \"pamoxicillin\" \"piramox\" #> [40] \"robamox\" \"sawamox pm\" \"tolodina\" #> [43] \"unicillin\" \"utimox\" \"vetramox\" ab_tradenames(\"AMX\") # same #> [1] \"actimoxi\" \"amoclen\" \"amolin\" #> [4] \"amopen\" \"amopenixin\" \"amoxibiotic\" #> [7] \"amoxicaps\" \"amoxicilina\" \"amoxicillin\" #> [10] \"amoxicilline\" \"amoxicillinum\" \"amoxiden\" #> [13] \"amoxil\" \"amoxivet\" \"amoxy\" #> [16] \"amoxycillin\" \"anemolin\" \"aspenil\" #> [19] \"biomox\" \"bristamox\" \"cemoxin\" #> [22] \"clamoxyl\" \"delacillin\" \"dispermox\" #> [25] \"efpenix\" \"flemoxin\" \"hiconcil\" #> [28] \"histocillin\" \"hydroxyampicillin\" \"ibiamox\" #> [31] \"imacillin\" \"lamoxy\" \"metafarma capsules\" #> [34] \"metifarma capsules\" \"moxacin\" \"moxatag\" #> [37] \"ospamox\" \"pamoxicillin\" \"piramox\" #> [40] \"robamox\" \"sawamox pm\" \"tolodina\" #> [43] \"unicillin\" \"utimox\" \"vetramox\" ab_group(\"AMX\") # \"Beta-lactams/penicillins\" #> [1] \"Beta-lactams/penicillins\" ab_atc_group1(\"AMX\") # \"Beta-lactam antibacterials, penicillins\" #> [1] \"Beta-lactam antibacterials, penicillins\" ab_atc_group2(\"AMX\") # \"Penicillins with extended spectrum\" #> [1] \"Penicillins with extended spectrum\" ab_url(\"AMX\") # link to the official WHO page #> Amoxicillin #> \"https://www.whocc.no/atc_ddd_index/?code=J01CA04&showdescription=no\" # smart lowercase tranformation ab_name(x = c(\"AMC\", \"PLB\")) # \"Amoxicillin/clavulanic acid\" \"Polymyxin B\" #> [1] \"Amoxicillin/clavulanic acid\" \"Polymyxin B\" ab_name(x = c(\"AMC\", \"PLB\"), tolower = TRUE) # \"amoxicillin/clavulanic acid\" \"polymyxin B\" #> [1] \"amoxicillin/clavulanic acid\" \"polymyxin B\" # defined daily doses (DDD) ab_ddd(\"AMX\", \"oral\") # 1.5 #> [1] 1.5 ab_ddd_units(\"AMX\", \"oral\") # \"g\" #> [1] \"g\" ab_ddd(\"AMX\", \"iv\") # 3 #> [1] 3 ab_ddd_units(\"AMX\", \"iv\") # \"g\" #> [1] \"g\" ab_info(\"AMX\") # all properties as a list #> $ab #> [1] \"AMX\" #> #> $cid #> [1] 33613 #> #> $name #> [1] \"Amoxicillin\" #> #> $group #> [1] \"Beta-lactams/penicillins\" #> #> $atc #> [1] \"J01CA04\" #> #> $atc_group1 #> [1] \"Beta-lactam antibacterials, penicillins\" #> #> $atc_group2 #> [1] \"Penicillins with extended spectrum\" #> #> $tradenames #> [1] \"actimoxi\" \"amoclen\" \"amolin\" #> [4] \"amopen\" \"amopenixin\" \"amoxibiotic\" #> [7] \"amoxicaps\" \"amoxicilina\" \"amoxicillin\" #> [10] \"amoxicilline\" \"amoxicillinum\" \"amoxiden\" #> [13] \"amoxil\" \"amoxivet\" \"amoxy\" #> [16] \"amoxycillin\" \"anemolin\" \"aspenil\" #> [19] \"biomox\" \"bristamox\" \"cemoxin\" #> [22] \"clamoxyl\" \"delacillin\" \"dispermox\" #> [25] \"efpenix\" \"flemoxin\" \"hiconcil\" #> [28] \"histocillin\" \"hydroxyampicillin\" \"ibiamox\" #> [31] \"imacillin\" \"lamoxy\" \"metafarma capsules\" #> [34] \"metifarma capsules\" \"moxacin\" \"moxatag\" #> [37] \"ospamox\" \"pamoxicillin\" \"piramox\" #> [40] \"robamox\" \"sawamox pm\" \"tolodina\" #> [43] \"unicillin\" \"utimox\" \"vetramox\" #> #> $loinc #> [1] \"16365-9\" \"25274-2\" \"3344-9\" \"80133-2\" #> #> $ddd #> $ddd$oral #> $ddd$oral$amount #> [1] 1.5 #> #> $ddd$oral$units #> [1] \"g\" #> #> #> $ddd$iv #> $ddd$iv$amount #> [1] 3 #> #> $ddd$iv$units #> [1] \"g\" #> #> #> # all ab_* functions use as.ab() internally, so you can go from 'any' to 'any': ab_atc(\"AMP\") # ATC code of AMP (ampicillin) #> [1] \"J01CA01\" \"S01AA19\" ab_group(\"J01CA01\") # Drug group of ampicillins ATC code #> [1] \"Beta-lactams/penicillins\" ab_loinc(\"ampicillin\") # LOINC codes of ampicillin #> [1] \"21066-6\" \"3355-5\" \"33562-0\" \"33919-2\" \"43883-8\" \"43884-6\" \"87604-5\" ab_name(\"21066-6\") # \"Ampicillin\" (using LOINC) #> [1] \"Ampicillin\" ab_name(6249) # \"Ampicillin\" (using CID) #> [1] \"Ampicillin\" ab_name(\"J01CA01\") # \"Ampicillin\" (using ATC) #> [1] \"Ampicillin\" # spelling from different languages and dyslexia are no problem ab_atc(\"ceftriaxon\") #> [1] \"J01DD04\" ab_atc(\"cephtriaxone\") #> [1] \"J01DD04\" ab_atc(\"cephthriaxone\") #> [1] \"J01DD04\" ab_atc(\"seephthriaaksone\") #> [1] \"J01DD04\" # use set_ab_names() for renaming columns colnames(example_isolates) #> [1] \"date\" \"hospital_id\" \"ward_icu\" \"ward_clinical\" #> [5] \"ward_outpatient\" \"age\" \"gender\" \"patient_id\" #> [9] \"mo\" \"PEN\" \"OXA\" \"FLC\" #> [13] \"AMX\" \"AMC\" \"AMP\" \"TZP\" #> [17] \"CZO\" \"FEP\" \"CXM\" \"FOX\" #> [21] \"CTX\" \"CAZ\" \"CRO\" \"GEN\" #> [25] \"TOB\" \"AMK\" \"KAN\" \"TMP\" #> [29] \"SXT\" \"NIT\" \"FOS\" \"LNZ\" #> [33] \"CIP\" \"MFX\" \"VAN\" \"TEC\" #> [37] \"TCY\" \"TGC\" \"DOX\" \"ERY\" #> [41] \"CLI\" \"AZM\" \"IPM\" \"MEM\" #> [45] \"MTR\" \"CHL\" \"COL\" \"MUP\" #> [49] \"RIF\" colnames(set_ab_names(example_isolates)) #> [1] \"date\" \"hospital_id\" #> [3] \"ward_icu\" \"ward_clinical\" #> [5] \"ward_outpatient\" \"age\" #> [7] \"gender\" \"patient_id\" #> [9] \"mo\" \"benzylpenicillin\" #> [11] \"oxacillin\" \"flucloxacillin\" #> [13] \"amoxicillin\" \"amoxicillin_clavulanic_acid\" #> [15] \"ampicillin\" \"piperacillin_tazobactam\" #> [17] \"cefazolin\" \"cefepime\" #> [19] \"cefuroxime\" \"cefoxitin\" #> [21] \"cefotaxime\" \"ceftazidime\" #> [23] \"ceftriaxone\" \"gentamicin\" #> [25] \"tobramycin\" \"amikacin\" #> [27] \"kanamycin\" \"trimethoprim\" #> [29] \"trimethoprim_sulfamethoxazole\" \"nitrofurantoin\" #> [31] \"fosfomycin\" \"linezolid\" #> [33] \"ciprofloxacin\" \"moxifloxacin\" #> [35] \"vancomycin\" \"teicoplanin\" #> [37] \"tetracycline\" \"tigecycline\" #> [39] \"doxycycline\" \"erythromycin\" #> [41] \"clindamycin\" \"azithromycin\" #> [43] \"imipenem\" \"meropenem\" #> [45] \"metronidazole\" \"chloramphenicol\" #> [47] \"colistin\" \"mupirocin\" #> [49] \"rifampicin\" colnames(set_ab_names(example_isolates, NIT:VAN)) #> [1] \"date\" \"hospital_id\" \"ward_icu\" \"ward_clinical\" #> [5] \"ward_outpatient\" \"age\" \"gender\" \"patient_id\" #> [9] \"mo\" \"PEN\" \"OXA\" \"FLC\" #> [13] \"AMX\" \"AMC\" \"AMP\" \"TZP\" #> [17] \"CZO\" \"FEP\" \"CXM\" \"FOX\" #> [21] \"CTX\" \"CAZ\" \"CRO\" \"GEN\" #> [25] \"TOB\" \"AMK\" \"KAN\" \"TMP\" #> [29] \"SXT\" \"nitrofurantoin\" \"fosfomycin\" \"linezolid\" #> [33] \"ciprofloxacin\" \"moxifloxacin\" \"vancomycin\" \"TEC\" #> [37] \"TCY\" \"TGC\" \"DOX\" \"ERY\" #> [41] \"CLI\" \"AZM\" \"IPM\" \"MEM\" #> [45] \"MTR\" \"CHL\" \"COL\" \"MUP\" #> [49] \"RIF\" # \\donttest{ if (require(\"dplyr\")) { example_isolates %>% set_ab_names() %>% head() # this does the same: example_isolates %>% rename_with(set_ab_names)%>% head() # set_ab_names() works with any AB property: example_isolates %>% set_ab_names(property = \"atc\")%>% head() example_isolates %>% set_ab_names(where(is.rsi)) %>% colnames() example_isolates %>% set_ab_names(NIT:VAN) %>% colnames() } #> [1] \"date\" \"hospital_id\" \"ward_icu\" \"ward_clinical\" #> [5] \"ward_outpatient\" \"age\" \"gender\" \"patient_id\" #> [9] \"mo\" \"PEN\" \"OXA\" \"FLC\" #> [13] \"AMX\" \"AMC\" \"AMP\" \"TZP\" #> [17] \"CZO\" \"FEP\" \"CXM\" \"FOX\" #> [21] \"CTX\" \"CAZ\" \"CRO\" \"GEN\" #> [25] \"TOB\" \"AMK\" \"KAN\" \"TMP\" #> [29] \"SXT\" \"nitrofurantoin\" \"fosfomycin\" \"linezolid\" #> [33] \"ciprofloxacin\" \"moxifloxacin\" \"vancomycin\" \"TEC\" #> [37] \"TCY\" \"TGC\" \"DOX\" \"ERY\" #> [41] \"CLI\" \"AZM\" \"IPM\" \"MEM\" #> [45] \"MTR\" \"CHL\" \"COL\" \"MUP\" #> [49] \"RIF\" # }"},{"path":"https://msberends.github.io/AMR/reference/age.html","id":null,"dir":"Reference","previous_headings":"","what":"Age in Years of Individuals — age","title":"Age in Years of Individuals — age","text":"Calculates age years based reference date, system date default.","code":""},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Age in Years of Individuals — age","text":"","code":"age(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...)"},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Age in Years of Individuals — age","text":"x date(s), character (vectors) coerced .POSIXlt() reference reference date(s) (defaults today), character (vectors) coerced .POSIXlt() exact logical indicate whether age calculation exact, .e. decimals. divides number days year--date (YTD) x number days year reference (either 365 366). na.rm logical indicate whether missing values removed ... arguments passed .POSIXlt(), origin","code":""},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Age in Years of Individuals — age","text":"integer (decimals) exact = FALSE, double (decimals) otherwise","code":""},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Age in Years of Individuals — age","text":"Ages 0 returned NA warning. Ages 120 give warning. function vectorises x reference, meaning either can length 1 argument larger length.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Age in Years of Individuals — age","text":"","code":"# 10 random pre-Y2K birth dates df <- data.frame(birth_date = as.Date(\"2000-01-01\") - runif(10) * 25000) # add ages df$age <- age(df$birth_date) # add exact ages df$age_exact <- age(df$birth_date, exact = TRUE) # add age at millenium switch df$age_at_y2k <- age(df$birth_date, \"2000-01-01\") df #> birth_date age age_exact age_at_y2k #> 1 1955-03-05 67 67.46301 44 #> 2 1969-09-23 52 52.90959 30 #> 3 1952-10-15 69 69.84932 47 #> 4 1940-09-07 81 81.95342 59 #> 5 1956-10-12 65 65.85753 43 #> 6 1997-03-26 25 25.40548 2 #> 7 1946-04-17 76 76.34521 53 #> 8 1987-04-28 35 35.31507 12 #> 9 1957-09-27 64 64.89863 42 #> 10 1949-07-17 73 73.09589 50"},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":null,"dir":"Reference","previous_headings":"","what":"Split Ages into Age Groups — age_groups","title":"Split Ages into Age Groups — age_groups","text":"Split ages age groups defined split argument. allows easier demographic (antimicrobial resistance) analysis.","code":""},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Split Ages into Age Groups — age_groups","text":"","code":"age_groups(x, split_at = c(12, 25, 55, 75), na.rm = FALSE)"},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Split Ages into Age Groups — age_groups","text":"x age, e.g. calculated age() split_at values split x , defaults age groups 0-11, 12-24, 25-54, 55-74 75+. See Details. na.rm logical indicate whether missing values removed","code":""},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Split Ages into Age Groups — age_groups","text":"Ordered factor","code":""},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Split Ages into Age Groups — age_groups","text":"split ages, input split_at argument can : numeric vector. value e.g. c(10, 20) split x 0-9, 10-19 20+. value 50 split x 0-49 50+. default split young children (0-11), youth (12-24), young adults (25-54), middle-aged adults (55-74) elderly (75+). character: \"children\" \"kids\", equivalent : c(0, 1, 2, 4, 6, 13, 18). split 0, 1, 2-3, 4-5, 6-12, 13-17 18+. \"elderly\" \"seniors\", equivalent : c(65, 75, 85). split 0-64, 65-74, 75-84, 85+. \"fives\", equivalent : 1:20 * 5. split 0-4, 5-9, ..., 95-99, 100+. \"tens\", equivalent : 1:10 * 10. split 0-9, 10-19, ..., 90-99, 100+.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Split Ages into Age Groups — age_groups","text":"","code":"ages <- c(3, 8, 16, 54, 31, 76, 101, 43, 21) # split into 0-49 and 50+ age_groups(ages, 50) #> [1] 0-49 0-49 0-49 50+ 0-49 50+ 50+ 0-49 0-49 #> Levels: 0-49 < 50+ # split into 0-19, 20-49 and 50+ age_groups(ages, c(20, 50)) #> [1] 0-19 0-19 0-19 50+ 20-49 50+ 50+ 20-49 20-49 #> Levels: 0-19 < 20-49 < 50+ # split into groups of ten years age_groups(ages, 1:10 * 10) #> [1] 0-9 0-9 10-19 50-59 30-39 70-79 100+ 40-49 20-29 #> 11 Levels: 0-9 < 10-19 < 20-29 < 30-39 < 40-49 < 50-59 < 60-69 < ... < 100+ age_groups(ages, split_at = \"tens\") #> [1] 0-9 0-9 10-19 50-59 30-39 70-79 100+ 40-49 20-29 #> 11 Levels: 0-9 < 10-19 < 20-29 < 30-39 < 40-49 < 50-59 < 60-69 < ... < 100+ # split into groups of five years age_groups(ages, 1:20 * 5) #> [1] 0-4 5-9 15-19 50-54 30-34 75-79 100+ 40-44 20-24 #> 21 Levels: 0-4 < 5-9 < 10-14 < 15-19 < 20-24 < 25-29 < 30-34 < ... < 100+ age_groups(ages, split_at = \"fives\") #> [1] 0-4 5-9 15-19 50-54 30-34 75-79 100+ 40-44 20-24 #> 21 Levels: 0-4 < 5-9 < 10-14 < 15-19 < 20-24 < 25-29 < 30-34 < ... < 100+ # split specifically for children age_groups(ages, c(1, 2, 4, 6, 13, 18)) #> [1] 2-3 6-12 13-17 18+ 18+ 18+ 18+ 18+ 18+ #> Levels: 0 < 1 < 2-3 < 4-5 < 6-12 < 13-17 < 18+ age_groups(ages, \"children\") #> [1] 2-3 6-12 13-17 18+ 18+ 18+ 18+ 18+ 18+ #> Levels: 0 < 1 < 2-3 < 4-5 < 6-12 < 13-17 < 18+ # \\donttest{ # resistance of ciprofloxacin per age group if (require(\"dplyr\")) { example_isolates %>% filter_first_isolate() %>% filter(mo == as.mo(\"E. coli\")) %>% group_by(age_group = age_groups(age)) %>% select(age_group, CIP) %>% ggplot_rsi(x = \"age_group\", minimum = 0, x.title = \"Age Group\", title = \"Ciprofloxacin resistance per age group\") } #> ℹ Function `as.mo()` is uncertain about \"E. coli\" (assuming Escherichia #> coli). Run `mo_uncertainties()` to review this. # }"},{"path":"https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html","id":null,"dir":"Reference","previous_headings":"","what":"Antibiotic Selectors — antibiotic_class_selectors","title":"Antibiotic Selectors — antibiotic_class_selectors","text":"functions allow filtering rows selecting columns based antibiotic test results specific antibiotic class group, without need define columns antibiotic abbreviations. short, column name resembles antimicrobial agent, picked functions matches pharmaceutical class: \"cefazolin\", \"CZO\" \"J01DB04\" picked cephalosporins().","code":""},{"path":"https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Antibiotic Selectors — antibiotic_class_selectors","text":"","code":"ab_class(ab_class, only_rsi_columns = FALSE, only_treatable = TRUE, ...) ab_selector(filter, only_rsi_columns = FALSE, only_treatable = TRUE, ...) aminoglycosides(only_rsi_columns = FALSE, only_treatable = TRUE, ...) aminopenicillins(only_rsi_columns = FALSE, ...) antifungals(only_rsi_columns = FALSE, ...) antimycobacterials(only_rsi_columns = FALSE, ...) betalactams(only_rsi_columns = FALSE, only_treatable = TRUE, ...) carbapenems(only_rsi_columns = FALSE, only_treatable = TRUE, ...) cephalosporins(only_rsi_columns = FALSE, ...) cephalosporins_1st(only_rsi_columns = FALSE, ...) cephalosporins_2nd(only_rsi_columns = FALSE, ...) cephalosporins_3rd(only_rsi_columns = FALSE, ...) cephalosporins_4th(only_rsi_columns = FALSE, ...) cephalosporins_5th(only_rsi_columns = FALSE, ...) fluoroquinolones(only_rsi_columns = FALSE, ...) glycopeptides(only_rsi_columns = FALSE, ...) lincosamides(only_rsi_columns = FALSE, ...) lipoglycopeptides(only_rsi_columns = FALSE, ...) macrolides(only_rsi_columns = FALSE, ...) oxazolidinones(only_rsi_columns = FALSE, ...) penicillins(only_rsi_columns = FALSE, ...) polymyxins(only_rsi_columns = FALSE, only_treatable = TRUE, ...) streptogramins(only_rsi_columns = FALSE, ...) quinolones(only_rsi_columns = FALSE, ...) tetracyclines(only_rsi_columns = FALSE, ...) trimethoprims(only_rsi_columns = FALSE, ...) ureidopenicillins(only_rsi_columns = FALSE, ...) administrable_per_os(only_rsi_columns = FALSE, ...) administrable_iv(only_rsi_columns = FALSE, ...) not_intrinsic_resistant( only_rsi_columns = FALSE, col_mo = NULL, version_expertrules = 3.3, ... )"},{"path":"https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Antibiotic Selectors — antibiotic_class_selectors","text":"ab_class antimicrobial class part , \"carba\" \"carbapenems\". columns group, atc_group1 atc_group2 antibiotics data set searched (case-insensitive) value. only_rsi_columns logical indicate whether columns class must selected (defaults FALSE), see .rsi() only_treatable logical indicate whether agents laboratory tests excluded (defaults TRUE), gentamicin-high (GEH) imipenem/EDTA (IPE) ... ignored, place allow future extensions filter expression evaluated antibiotics data set, name %like% \"trim\" col_mo column name IDs microorganisms (see .mo()), defaults first column class mo. Values coerced using .mo(). version_expertrules version number use EUCAST Expert Rules Intrinsic Resistance guideline. Can either \"3.3\", \"3.2\" \"3.1\".","code":""},{"path":"https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Antibiotic Selectors — antibiotic_class_selectors","text":"(internally) character vector column names, additional class \"ab_selector\"","code":""},{"path":"https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Antibiotic Selectors — antibiotic_class_selectors","text":"functions can used data set calls selecting columns filtering rows. heavily inspired Tidyverse selection helpers everything(), also work base R dplyr verbs. Nonetheless, convenient use dplyr functions select(), filter() summarise(), see Examples. columns data functions called searched known antibiotic names, abbreviations, brand names, codes (ATC, EARS-Net, , etc.) according antibiotics data set. means selector aminoglycosides() pick column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc. ab_class() function can used filter/select manually defined antibiotic class. searches results antibiotics data set within columns group, atc_group1 atc_group2. ab_selector() function can used internally filter antibiotics data set results, see Examples. allows filtering (part ) certain name, /group name even minimum DDDs oral treatment. function yields highest flexibility, also least user-friendly, since requires hard-coded filter set. administrable_per_os() administrable_iv() functions also rely antibiotics data set - antibiotic columns matched DDD (defined daily dose) resp. oral IV treatment available antibiotics data set. not_intrinsic_resistant() function can used select antibiotic columns pose intrinsic resistance microorganisms data set. example, data set contains microorganism codes names E. coli K. pneumoniae contains column \"vancomycin\", column removed (rather, unselected) using function. currently applies 'EUCAST Expert Rules' 'EUCAST Intrinsic Resistance Unusual Phenotypes' v3.3 (2021) determine intrinsic resistance, using eucast_rules() function internally. determination, function quite slow terms performance.","code":""},{"path":"https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html","id":"full-list-of-supported-antibiotic-classes","dir":"Reference","previous_headings":"","what":"Full list of supported (antibiotic) classes","title":"Antibiotic Selectors — antibiotic_class_selectors","text":"aminoglycosides() can select: amikacin (AMK), amikacin/fosfomycin (AKF), amphotericin B-high (AMH), apramycin (APR), arbekacin (ARB), astromicin (AST), bekanamycin (BEK), dibekacin (DKB), framycetin (FRM), gentamicin (GEN), gentamicin-high (GEH), habekacin (HAB), hygromycin (HYG), isepamicin (ISE), kanamycin (KAN), kanamycin-high (KAH), kanamycin/cephalexin (KAC), micronomicin (MCR), neomycin (NEO), netilmicin (NET), pentisomicin (PIM), plazomicin (PLZ), propikacin (PKA), ribostamycin (RST), sisomicin (SIS), streptoduocin (STR), streptomycin (STR1), streptomycin-high (STH), tobramycin (TOB) tobramycin-high (TOH) aminopenicillins() can select: amoxicillin (AMX) ampicillin (AMP) antifungals() can select: 5-fluorocytosine (FCT), amphotericin B (AMB), anidulafungin (ANI), butoconazole (), caspofungin (CAS), ciclopirox (CIX), clotrimazole (CTR), econazole (ECO), fluconazole (FLU), fosfluconazole (FFL), griseofulvin (GRI), hachimycin (HCH), ibrexafungerp (IBX), isavuconazole (ISV), isoconazole (ISO), itraconazole (ITR), ketoconazole (KET), manogepix (MGX), micafungin (MIF), miconazole (MCZ), nystatin (NYS), pimaricin (PMR), posaconazole (POS), rezafungin (RZF), ribociclib (RBC), sulconazole (SUC), terbinafine (TRB), terconazole (TRC) voriconazole (VOR) antimycobacterials() can select: 4-aminosalicylic acid (AMA), calcium aminosalicylate (CLA), capreomycin (CAP), clofazimine (CLF), delamanid (DLM), enviomycin (ENV), ethambutol (ETH), ethambutol/isoniazid (ETI), ethionamide (ETI1), isoniazid (INH), morinamide (MRN), p-aminosalicylic acid (PAS), pretomanid (PMD), prothionamide (PTH), pyrazinamide (PZA), rifabutin (RIB), rifampicin (RIF), rifampicin/isoniazid (RFI), rifampicin/pyrazinamide/ethambutol/isoniazid (RPEI), rifampicin/pyrazinamide/isoniazid (RPI), rifamycin (RFM), rifapentine (RFP), simvastatin/fenofibrate (SMF), sodium aminosalicylate (SDA), streptomycin/isoniazid (STI), terizidone (TRZ), thioacetazone/isoniazid (THI1), tiocarlide (TCR) viomycin (VIO) betalactams() can select: amoxicillin (AMX), amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin (AMP), ampicillin/sulbactam (SAM), apalcillin (APL), aspoxicillin (APX), avibactam (AVB), azidocillin (AZD), azlocillin (AZL), aztreonam (ATM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), bacampicillin (BAM), benzathine benzylpenicillin (BNB), benzathine phenoxymethylpenicillin (BNP), benzylpenicillin (PEN), biapenem (BIA), carbenicillin (CRB), carindacillin (CRN), cefacetrile (CAC), cefaclor (CEC), cefadroxil (CFR), cefaloridine (RID), cefamandole (MAN), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefepime (FEP), cefepime/clavulanic acid (CPC), cefepime/nacubactam (FNC), cefepime/tazobactam (FPT), cefetamet (CAT), cefetamet pivoxil (CPI), cefetecol (CCL), cefetrizole (CZL), cefixime (CFM), cefmenoxime (CMX), cefmetazole (CMZ), cefodizime (DIZ), cefonicid (CID), cefoperazone (CFP), cefoperazone/sulbactam (CSL), ceforanide (CND), cefoselis (CSE), cefotaxime (CTX), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotetan (CTT), cefotiam (CTF), cefotiam hexetil (CHE), cefovecin (FOV), cefoxitin (FOX), cefoxitin screening (FOX1), cefozopran (ZOP), cefpimizole (CFZ), cefpiramide (CPM), cefpirome (CPO), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefprozil (CPR), cefquinome (CEQ), cefroxadine (CRD), cefsulodin (CFS), cefsumide (CSU), ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftezole (CTL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), ceftolozane/enzyme inhibitor (CEI), ceftolozane/tazobactam (CZT), ceftriaxone (CRO), cefuroxime (CXM), cefuroxime axetil (CXA), cephalexin (LEX), cephalothin (CEP), cephapirin (HAP), cephradine (CED), ciclacillin (CIC), clometocillin (CLM), cloxacillin (CLO), dicloxacillin (DIC), doripenem (DOR), epicillin (EPC), ertapenem (ETP), flucloxacillin (FLC), hetacillin (HET), imipenem (IPM), imipenem/EDTA (IPE), imipenem/relebactam (IMR), latamoxef (LTM), lenampicillin (LEN), loracarbef (LOR), mecillinam (MEC), meropenem (MEM), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), metampicillin (MTM), methicillin (MET), mezlocillin (MEZ), mezlocillin/sulbactam (MSU), nacubactam (NAC), nafcillin (NAF), oxacillin (OXA), panipenem (PAN), penamecillin (PNM), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), phenethicillin (PHE), phenoxymethylpenicillin (PHN), piperacillin (PIP), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), piridicillin (PRC), pivampicillin (PVM), pivmecillinam (PME), procaine benzylpenicillin (PRB), propicillin (PRP), razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA), sarmoxicillin (SRX), sulbactam (SUL), sulbenicillin (SBC), sultamicillin (SLT6), talampicillin (TAL), tazobactam (TAZ), tebipenem (TBP), temocillin (TEM), ticarcillin (TIC) ticarcillin/clavulanic acid (TCC) carbapenems() can select: biapenem (BIA), doripenem (DOR), ertapenem (ETP), imipenem (IPM), imipenem/EDTA (IPE), imipenem/relebactam (IMR), meropenem (MEM), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), panipenem (PAN), razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA) tebipenem (TBP) cephalosporins() can select: cefacetrile (CAC), cefaclor (CEC), cefadroxil (CFR), cefaloridine (RID), cefamandole (MAN), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefepime (FEP), cefepime/clavulanic acid (CPC), cefepime/tazobactam (FPT), cefetamet (CAT), cefetamet pivoxil (CPI), cefetecol (CCL), cefetrizole (CZL), cefixime (CFM), cefmenoxime (CMX), cefmetazole (CMZ), cefodizime (DIZ), cefonicid (CID), cefoperazone (CFP), cefoperazone/sulbactam (CSL), ceforanide (CND), cefoselis (CSE), cefotaxime (CTX), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotetan (CTT), cefotiam (CTF), cefotiam hexetil (CHE), cefovecin (FOV), cefoxitin (FOX), cefoxitin screening (FOX1), cefozopran (ZOP), cefpimizole (CFZ), cefpiramide (CPM), cefpirome (CPO), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefprozil (CPR), cefquinome (CEQ), cefroxadine (CRD), cefsulodin (CFS), cefsumide (CSU), ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftezole (CTL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), ceftolozane/enzyme inhibitor (CEI), ceftolozane/tazobactam (CZT), ceftriaxone (CRO), cefuroxime (CXM), cefuroxime axetil (CXA), cephalexin (LEX), cephalothin (CEP), cephapirin (HAP), cephradine (CED), latamoxef (LTM) loracarbef (LOR) cephalosporins_1st() can select: cefacetrile (CAC), cefadroxil (CFR), cefaloridine (RID), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefroxadine (CRD), ceftezole (CTL), cephalexin (LEX), cephalothin (CEP), cephapirin (HAP) cephradine (CED) cephalosporins_2nd() can select: cefaclor (CEC), cefamandole (MAN), cefmetazole (CMZ), cefonicid (CID), ceforanide (CND), cefotetan (CTT), cefotiam (CTF), cefoxitin (FOX), cefoxitin screening (FOX1), cefprozil (CPR), cefuroxime (CXM), cefuroxime axetil (CXA) loracarbef (LOR) cephalosporins_3rd() can select: cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefetamet (CAT), cefetamet pivoxil (CPI), cefixime (CFM), cefmenoxime (CMX), cefodizime (DIZ), cefoperazone (CFP), cefoperazone/sulbactam (CSL), cefotaxime (CTX), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotiam hexetil (CHE), cefovecin (FOV), cefpimizole (CFZ), cefpiramide (CPM), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefsulodin (CFS), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftriaxone (CRO) latamoxef (LTM) cephalosporins_4th() can select: cefepime (FEP), cefepime/clavulanic acid (CPC), cefepime/tazobactam (FPT), cefetecol (CCL), cefoselis (CSE), cefozopran (ZOP), cefpirome (CPO) cefquinome (CEQ) cephalosporins_5th() can select: ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), ceftolozane/enzyme inhibitor (CEI) ceftolozane/tazobactam (CZT) fluoroquinolones() can select: besifloxacin (BES), ciprofloxacin (CIP), clinafloxacin (CLX), danofloxacin (DAN), delafloxacin (DFX), difloxacin (DIF), enoxacin (ENX), enrofloxacin (ENR), finafloxacin (FIN), fleroxacin (FLE), garenoxacin (GRN), gatifloxacin (GAT), gemifloxacin (GEM), grepafloxacin (GRX), levofloxacin (LVX), levonadifloxacin (LND), lomefloxacin (LOM), marbofloxacin (MAR), metioxate (MXT), miloxacin (MIL), moxifloxacin (MFX), nadifloxacin (NAD), nifuroquine (NIF), norfloxacin (), ofloxacin (OFX), orbifloxacin (ORB), pazufloxacin (PAZ), pefloxacin (PEF), pradofloxacin (PRA), premafloxacin (PRX), prulifloxacin (PRU), rufloxacin (RFL), sarafloxacin (SAR), sitafloxacin (SIT), sparfloxacin (SPX), temafloxacin (TMX), tilbroquinol (TBQ), tioxacin (TXC), tosufloxacin (TFX) trovafloxacin (TVA) glycopeptides() can select: avoparcin (AVO), dalbavancin (DAL), norvancomycin (NVA), oritavancin (ORI), ramoplanin (RAM), teicoplanin (TEC), teicoplanin-macromethod (TCM), telavancin (TLV), vancomycin (VAN) vancomycin-macromethod (VAM) lincosamides() can select: acetylmidecamycin (ACM), acetylspiramycin (ASP), clindamycin (CLI), gamithromycin (GAM), kitasamycin (KIT), lincomycin (LIN), meleumycin (MEL), nafithromycin (ZWK), pirlimycin (PRL), primycin (PRM), solithromycin (SOL), tildipirosin (TIP), tilmicosin (TIL), tulathromycin (TUL), tylosin (TYL) tylvalosin (TYL1) lipoglycopeptides() can select: dalbavancin (DAL), oritavancin (ORI) telavancin (TLV) macrolides() can select: acetylmidecamycin (ACM), acetylspiramycin (ASP), azithromycin (AZM), clarithromycin (CLR), dirithromycin (DIR), erythromycin (ERY), flurithromycin (FLR1), gamithromycin (GAM), josamycin (JOS), kitasamycin (KIT), meleumycin (MEL), midecamycin (MID), miocamycin (MCM), nafithromycin (ZWK), oleandomycin (OLE), pirlimycin (PRL), primycin (PRM), rokitamycin (ROK), roxithromycin (RXT), solithromycin (SOL), spiramycin (SPI), telithromycin (TLT), tildipirosin (TIP), tilmicosin (TIL), troleandomycin (TRL), tulathromycin (TUL), tylosin (TYL) tylvalosin (TYL1) oxazolidinones() can select: cadazolid (CDZ), cycloserine (CYC), linezolid (LNZ), tedizolid (TZD) thiacetazone (THA) penicillins() can select: amoxicillin (AMX), amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin (AMP), ampicillin/sulbactam (SAM), apalcillin (APL), aspoxicillin (APX), avibactam (AVB), azidocillin (AZD), azlocillin (AZL), aztreonam (ATM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), bacampicillin (BAM), benzathine benzylpenicillin (BNB), benzathine phenoxymethylpenicillin (BNP), benzylpenicillin (PEN), carbenicillin (CRB), carindacillin (CRN), cefepime/nacubactam (FNC), ciclacillin (CIC), clometocillin (CLM), cloxacillin (CLO), dicloxacillin (DIC), epicillin (EPC), flucloxacillin (FLC), hetacillin (HET), lenampicillin (LEN), mecillinam (MEC), metampicillin (MTM), methicillin (MET), mezlocillin (MEZ), mezlocillin/sulbactam (MSU), nacubactam (NAC), nafcillin (NAF), oxacillin (OXA), penamecillin (PNM), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), phenethicillin (PHE), phenoxymethylpenicillin (PHN), piperacillin (PIP), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), piridicillin (PRC), pivampicillin (PVM), pivmecillinam (PME), procaine benzylpenicillin (PRB), propicillin (PRP), sarmoxicillin (SRX), sulbactam (SUL), sulbenicillin (SBC), sultamicillin (SLT6), talampicillin (TAL), tazobactam (TAZ), temocillin (TEM), ticarcillin (TIC) ticarcillin/clavulanic acid (TCC) polymyxins() can select: colistin (COL), polymyxin B (PLB) polymyxin B/polysorbate 80 (POP) quinolones() can select: besifloxacin (BES), cinoxacin (CIN), ciprofloxacin (CIP), clinafloxacin (CLX), danofloxacin (DAN), delafloxacin (DFX), difloxacin (DIF), enoxacin (ENX), enrofloxacin (ENR), finafloxacin (FIN), fleroxacin (FLE), flumequine (FLM), garenoxacin (GRN), gatifloxacin (GAT), gemifloxacin (GEM), grepafloxacin (GRX), levofloxacin (LVX), levonadifloxacin (LND), lomefloxacin (LOM), marbofloxacin (MAR), metioxate (MXT), miloxacin (MIL), moxifloxacin (MFX), nadifloxacin (NAD), nalidixic acid (NAL), nifuroquine (NIF), nitroxoline (NTR), norfloxacin (), ofloxacin (OFX), orbifloxacin (ORB), oxolinic acid (OXO), pazufloxacin (PAZ), pefloxacin (PEF), pipemidic acid (PPA), piromidic acid (PIR), pradofloxacin (PRA), premafloxacin (PRX), prulifloxacin (PRU), rosoxacin (ROS), rufloxacin (RFL), sarafloxacin (SAR), sitafloxacin (SIT), sparfloxacin (SPX), temafloxacin (TMX), tilbroquinol (TBQ), tioxacin (TXC), tosufloxacin (TFX) trovafloxacin (TVA) streptogramins() can select: pristinamycin (PRI) quinupristin/dalfopristin (QDA) tetracyclines() can select: cetocycline (CTO), chlortetracycline (CTE), clomocycline (CLM1), demeclocycline (DEM), doxycycline (DOX), eravacycline (ERV), lymecycline (LYM), metacycline (MTC), minocycline (MNO), omadacycline (OMC), oxytetracycline (OXY), penimepicycline (PNM1), rolitetracycline (RLT), tetracycline (TCY) tigecycline (TGC) trimethoprims() can select: brodimoprim (BDP), sulfadiazine (SDI), sulfadiazine/tetroxoprim (SLT), sulfadiazine/trimethoprim (SLT1), sulfadimethoxine (SUD), sulfadimidine (SDM), sulfadimidine/trimethoprim (SLT2), sulfafurazole (SLF), sulfaisodimidine (SLF1), sulfalene (SLF2), sulfamazone (SZO), sulfamerazine (SLF3), sulfamerazine/trimethoprim (SLT3), sulfamethizole (SLF4), sulfamethoxazole (SMX), sulfamethoxypyridazine (SLF5), sulfametomidine (SLF6), sulfametoxydiazine (SLF7), sulfametrole/trimethoprim (SLT4), sulfamoxole (SLF8), sulfamoxole/trimethoprim (SLT5), sulfanilamide (SLF9), sulfaperin (SLF10), sulfaphenazole (SLF11), sulfapyridine (SLF12), sulfathiazole (SUT), sulfathiourea (SLF13), trimethoprim (TMP) trimethoprim/sulfamethoxazole (SXT) ureidopenicillins() can select: azlocillin (AZL), mezlocillin (MEZ), piperacillin (PIP) piperacillin/tazobactam (TZP)","code":""},{"path":"https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html","id":"reference-data-publicly-available","dir":"Reference","previous_headings":"","what":"Reference Data Publicly Available","title":"Antibiotic Selectors — antibiotic_class_selectors","text":"reference data sets (microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.) AMR package publicly freely available. continually export data sets formats use R, SPSS, SAS, Stata Excel. also supply flat files machine-readable suitable input software program, laboratory information systems. Please find download links website, automatically updated every code change.","code":""},{"path":"https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Antibiotic Selectors — antibiotic_class_selectors","text":"","code":"# `example_isolates` is a data set available in the AMR package. # See ?example_isolates. df <- example_isolates[ , c(\"hospital_id\", \"mo\", \"AMP\", \"AMC\", \"TZP\", \"CXM\", \"CRO\", \"GEN\", \"TOB\", \"COL\", \"IPM\", \"MEM\", \"TEC\", \"VAN\")] # base R ------------------------------------------------------------------ # select columns 'IPM' (imipenem) and 'MEM' (meropenem) df[, carbapenems()] #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> # A tibble: 2,000 × 2 #> IPM MEM #> #> 1 NA NA #> 2 NA NA #> 3 NA NA #> 4 NA NA #> 5 NA NA #> 6 NA NA #> 7 NA NA #> 8 NA NA #> 9 NA NA #> 10 NA NA #> # … with 1,990 more rows #> # ℹ Use `print(n = ...)` to see more rows # select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' df[, c(\"mo\", aminoglycosides())] #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin) and 'TOB' #> (tobramycin) #> # A tibble: 2,000 × 3 #> mo GEN TOB #> #> 1 B_ESCHR_COLI NA NA #> 2 B_ESCHR_COLI NA NA #> 3 B_STPHY_EPDR NA NA #> 4 B_STPHY_EPDR NA NA #> 5 B_STPHY_EPDR NA NA #> 6 B_STPHY_EPDR NA NA #> 7 B_STPHY_AURS NA S #> 8 B_STPHY_AURS NA S #> 9 B_STPHY_EPDR NA NA #> 10 B_STPHY_EPDR NA NA #> # … with 1,990 more rows #> # ℹ Use `print(n = ...)` to see more rows # select only antibiotic columns with DDDs for oral treatment df[, administrable_per_os()] #> ℹ For `administrable_per_os()` using columns 'AMP' (ampicillin), 'AMC' #> (amoxicillin/clavulanic acid), 'CXM' (cefuroxime), 'COL' (colistin) and #> 'VAN' (vancomycin) #> # A tibble: 2,000 × 5 #> AMP AMC CXM COL VAN #> #> 1 NA I I NA R #> 2 NA I I NA R #> 3 NA NA R R S #> 4 NA NA R R S #> 5 NA NA R R S #> 6 NA NA R R S #> 7 R S S R S #> 8 R S S R S #> 9 NA NA R R S #> 10 NA NA S R S #> # … with 1,990 more rows #> # ℹ Use `print(n = ...)` to see more rows # filter using any() or all() df[any(carbapenems() == \"R\"), ] #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> # A tibble: 55 × 14 #> hospital…¹ mo AMP AMC TZP CXM CRO GEN TOB COL IPM #> #> 1 A B_ENTRC_FACM NA NA NA R R R R R R #> 2 A B_ENTRC_FACM NA NA NA R R R R R R #> 3 B B_STNTR_MLTP R R R R R R R R R #> 4 B B_ENTRC NA NA R NA NA NA NA R R #> 5 B B_ENTRC NA NA R NA NA NA NA R R #> 6 B B_ENTRC_FACM NA NA R R R R R R R #> 7 D B_ENTRC_FACM NA NA R R R R R R R #> 8 A B_ENTRC_FACM NA NA R R R R R R R #> 9 A B_PROTS_MRBL NA S S S S S S R R #> 10 A B_PROTS_MRBL NA S S S S S S R R #> # … with 45 more rows, 3 more variables: MEM , TEC , VAN , and #> # abbreviated variable name ¹hospital_id #> # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names subset(df, any(carbapenems() == \"R\")) #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> # A tibble: 55 × 14 #> hospital…¹ mo AMP AMC TZP CXM CRO GEN TOB COL IPM #> #> 1 A B_ENTRC_FACM NA NA NA R R R R R R #> 2 A B_ENTRC_FACM NA NA NA R R R R R R #> 3 B B_STNTR_MLTP R R R R R R R R R #> 4 B B_ENTRC NA NA R NA NA NA NA R R #> 5 B B_ENTRC NA NA R NA NA NA NA R R #> 6 B B_ENTRC_FACM NA NA R R R R R R R #> 7 D B_ENTRC_FACM NA NA R R R R R R R #> 8 A B_ENTRC_FACM NA NA R R R R R R R #> 9 A B_PROTS_MRBL NA S S S S S S R R #> 10 A B_PROTS_MRBL NA S S S S S S R R #> # … with 45 more rows, 3 more variables: MEM , TEC , VAN , and #> # abbreviated variable name ¹hospital_id #> # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names # filter on any or all results in the carbapenem columns (i.e., IPM, MEM): df[any(carbapenems()), ] #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> ℹ Filtering any of columns 'IPM' and 'MEM' to contain value \"R\", \"S\" or \"I\" #> # A tibble: 962 × 14 #> hospital…¹ mo AMP AMC TZP CXM CRO GEN TOB COL IPM #> #> 1 D B_ESCHR_COLI NA I NA S S NA S NA S #> 2 D B_ESCHR_COLI NA I NA S S NA S NA S #> 3 B B_PROTS_MRBL NA I NA S S NA NA R S #> 4 B B_PROTS_MRBL NA I NA S S NA NA R S #> 5 B B_SERRT_MRCS R R NA R NA NA NA R S #> 6 B B_SERRT_MRCS R R NA R NA NA NA R S #> 7 B B_SERRT_MRCS R R NA R NA NA NA R S #> 8 D B_KLBSL_PNMN R I NA S S S S NA S #> 9 D B_KLBSL_PNMN R I NA S S S S NA S #> 10 C B_ESCHR_COLI R R NA R S S NA NA S #> # … with 952 more rows, 3 more variables: MEM , TEC , VAN , and #> # abbreviated variable name ¹hospital_id #> # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names df[all(carbapenems()), ] #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> ℹ Filtering all of columns 'IPM' and 'MEM' to contain value \"R\", \"S\" or \"I\" #> # A tibble: 756 × 14 #> hospita…¹ mo AMP AMC TZP CXM CRO GEN TOB COL IPM #> #> 1 C B_STRPT_GRPB S S S S S R R R S #> 2 B B_STRPT_PYGN S S S S S R R R S #> 3 B B_STRPT_GRPA S S S S S R R R S #> 4 B B_STRPT_GRPA S S S S S R R R S #> 5 D B_STRPT_GRPB S S S S S R R R S #> 6 B B_ESCHR_COLI R R S S S S S NA S #> 7 B B_ENTRBC_CLOC R R S R NA S S NA S #> 8 B B_ENTRBC_CLOC R R S R NA S S NA S #> 9 B B_ESCHR_COLI NA S S S S S S NA S #> 10 B B_ESCHR_COLI NA S S S S S S NA S #> # … with 746 more rows, 3 more variables: MEM , TEC , VAN , and #> # abbreviated variable name ¹hospital_id #> # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names # filter with multiple antibiotic selectors using c() df[all(c(carbapenems(), aminoglycosides()) == \"R\"), ] #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin) and 'TOB' #> (tobramycin) #> # A tibble: 26 × 14 #> hospital…¹ mo AMP AMC TZP CXM CRO GEN TOB COL IPM #> #> 1 B B_STNTR_MLTP R R R R R R R R R #> 2 B B_ENTRC_FACM NA NA R R R R R R R #> 3 D B_ENTRC_FACM NA NA R R R R R R R #> 4 A B_ENTRC_FACM NA NA R R R R R R R #> 5 D B_STNTR_MLTP R R R R R R R R R #> 6 D B_ENTRC_FACM NA NA R R R R R R R #> 7 B B_STPHY_CONS R R R R R R R R R #> 8 A B_STPHY_CONS R R R R R R R R R #> 9 D B_STPHY_CONS R R R R R R R R R #> 10 D B_STPHY_CONS R R R R R R R R R #> # … with 16 more rows, 3 more variables: MEM , TEC , VAN , and #> # abbreviated variable name ¹hospital_id #> # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names # filter + select in one go: get penicillins in carbapenems-resistant strains df[any(carbapenems() == \"R\"), penicillins()] #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> ℹ For `penicillins()` using columns 'AMP' (ampicillin), 'AMC' #> (amoxicillin/clavulanic acid) and 'TZP' (piperacillin/tazobactam) #> # A tibble: 55 × 3 #> AMP AMC TZP #>