1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 08:32:04 +02:00

(v1.1.0.9007) lose dependencies

This commit is contained in:
2020-05-16 21:40:50 +02:00
parent 29609a0e2c
commit f68d71a5e0
44 changed files with 178 additions and 140 deletions

View File

@ -38,6 +38,7 @@ On our website \url{https://msberends.gitlab.io/AMR} you can find \href{https://
}
\examples{
\dontrun{
# transform existing disk zones to the `disk` class
library(dplyr)
df <- data.frame(microorganism = "E. coli",
@ -56,6 +57,7 @@ as.rsi(x = as.disk(18),
as.rsi(df)
}
}
\seealso{
\code{\link[=as.rsi]{as.rsi()}}
}

View File

@ -110,7 +110,7 @@ df <- data.frame(microorganism = "E. coli",
NIT = as.mic(32))
as.rsi(df)
\donttest{
\dontrun{
# the dplyr way
library(dplyr)
@ -157,6 +157,7 @@ is.rsi(rsi_data)
plot(rsi_data) # for percentages
barplot(rsi_data) # for frequencies
\dontrun{
library(dplyr)
example_isolates \%>\%
mutate_at(vars(PEN:RIF), as.rsi)
@ -173,6 +174,7 @@ example_isolates \%>\%
is.rsi.eligible(WHONET$`First name`) # fails, >80\% is invalid
is.rsi.eligible(WHONET$`First name`, threshold = 0.99) # succeeds
}
}
\seealso{
\code{\link[=as.mic]{as.mic()}}
}

View File

@ -75,7 +75,7 @@ On our website \url{https://msberends.gitlab.io/AMR} you can find \href{https://
}
\examples{
\donttest{
\dontrun{
# oral DDD (Defined Daily Dose) of amoxicillin
atc_online_property("J01CA04", "DDD", "O")
# parenteral DDD (Defined Daily Dose) of amoxicillin

View File

@ -36,6 +36,7 @@ On our website \url{https://msberends.gitlab.io/AMR} you can find \href{https://
\examples{
availability(example_isolates)
\dontrun{
library(dplyr)
example_isolates \%>\% availability()
@ -48,3 +49,4 @@ example_isolates \%>\%
select_if(is.rsi) \%>\%
availability()
}
}

View File

@ -158,7 +158,7 @@ count_susceptible(example_isolates$AMX)
susceptibility(example_isolates$AMX) * n_rsi(example_isolates$AMX)
if (!require("dplyr")) {
if (require("dplyr")) {
example_isolates \%>\%
group_by(hospital_id) \%>\%
summarise(R = count_R(CIP),

View File

@ -147,44 +147,45 @@ On our website \url{https://msberends.gitlab.io/AMR} you can find \href{https://
}
\examples{
library(dplyr)
library(ggplot2)
# get antimicrobial results for drugs against a UTI:
ggplot(example_isolates \%>\% select(AMX, NIT, FOS, TMP, CIP)) +
geom_rsi()
# prettify the plot using some additional functions:
df <- example_isolates \%>\% select(AMX, NIT, FOS, TMP, CIP)
ggplot(df) +
geom_rsi() +
scale_y_percent() +
scale_rsi_colours() +
labels_rsi_count() +
theme_rsi()
# or better yet, simplify this using the wrapper function - a single command:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi()
# get only proportions and no counts:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi(datalabels = FALSE)
# add other ggplot2 parameters as you like:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi(width = 0.5,
colour = "black",
size = 1,
linetype = 2,
alpha = 0.25)
example_isolates \%>\%
select(AMX) \%>\%
ggplot_rsi(colours = c(SI = "yellow"))
if (require("ggplot2") & require("dplyr")) {
# get antimicrobial results for drugs against a UTI:
ggplot(example_isolates \%>\% select(AMX, NIT, FOS, TMP, CIP)) +
geom_rsi()
# prettify the plot using some additional functions:
df <- example_isolates \%>\% select(AMX, NIT, FOS, TMP, CIP)
ggplot(df) +
geom_rsi() +
scale_y_percent() +
scale_rsi_colours() +
labels_rsi_count() +
theme_rsi()
# or better yet, simplify this using the wrapper function - a single command:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi()
# get only proportions and no counts:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi(datalabels = FALSE)
# add other ggplot2 parameters as you like:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi(width = 0.5,
colour = "black",
size = 1,
linetype = 2,
alpha = 0.25)
example_isolates \%>\%
select(AMX) \%>\%
ggplot_rsi(colours = c(SI = "yellow"))
}
\dontrun{

View File

@ -136,6 +136,7 @@ On our website \url{https://msberends.gitlab.io/AMR} you can find \href{https://
# `example_isolates` is a dataset available in the AMR package.
# See ?example_isolates.
\dontrun{
library(dplyr)
# set key antibiotics to a new variable
my_patients <- example_isolates \%>\%
@ -150,7 +151,7 @@ my_patients <- example_isolates \%>\%
# Check the difference, in this data set it results in 7\% more isolates:
sum(my_patients$first_regular, na.rm = TRUE)
sum(my_patients$first_weighted, na.rm = TRUE)
}
# output of the `key_antibiotics` function could be like this:
strainA <- "SSSRR.S.R..S"

View File

@ -68,11 +68,13 @@ a \%like\% b
#> TRUE TRUE TRUE
# get isolates whose name start with 'Ent' or 'ent'
\dontrun{
library(dplyr)
example_isolates \%>\%
filter(mo_name(mo) \%like\% "^ent") \%>\%
freq(mo)
}
}
\seealso{
\code{\link[base:grep]{base::grep()}}
}

View File

@ -206,7 +206,7 @@ On our website \url{https://msberends.gitlab.io/AMR} you can find \href{https://
}
\examples{
\donttest{
\dontrun{
library(dplyr)
example_isolates \%>\%

View File

@ -160,8 +160,7 @@ proportion_I(example_isolates$AMX)
proportion_IR(example_isolates$AMX)
proportion_R(example_isolates$AMX)
if (!require("dplyr")) {
library(dplyr)
if (require("dplyr")) {
example_isolates \%>\%
group_by(hospital_id) \%>\%
summarise(r = resistance(CIP),
@ -218,7 +217,9 @@ if (!require("dplyr")) {
select(hospital_id, AMX, CIP) \%>\%
group_by(hospital_id) \%>\%
proportion_df(translate = FALSE)
}
\dontrun{
# calculate current empiric combination therapy of Helicobacter gastritis:
my_table \%>\%
filter(first_isolate == TRUE,

View File

@ -132,11 +132,12 @@ x <- resistance_predict(example_isolates,
year_min = 2010,
model = "binomial")
plot(x)
ggplot_rsi_predict(x)
if (require("ggplot2")) {
ggplot_rsi_predict(x)
}
# using dplyr:
if (!require("dplyr")) {
library(dplyr)
if (require("dplyr")) {
x <- example_isolates \%>\%
filter_first_isolate() \%>\%
filter(mo_genus(mo) == "Staphylococcus") \%>\%
@ -149,7 +150,7 @@ if (!require("dplyr")) {
}
# create nice plots with ggplot2 yourself
if (!require(ggplot2) & !require("dplyr")) {
if (require(ggplot2) & require("dplyr")) {
data <- example_isolates \%>\%
filter(mo == as.mo("E. coli")) \%>\%