1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 20:02:04 +02:00

(v1.0.1.9000) first PCA implementation

This commit is contained in:
2020-03-07 21:48:21 +01:00
parent f444c24ed3
commit fa0d9c58d9
40 changed files with 2224 additions and 172 deletions

View File

@ -39,7 +39,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.0.1</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.0.1.9000</span>
</span>
</div>
@ -75,6 +75,13 @@
Predict antimicrobial resistance
</a>
</li>
<li>
<a href="../articles/PCA.html">
<span class="fa fa-compress-alt"></span>
Conduct Principal Component Analysis for AMR
</a>
</li>
<li>
<a href="../articles/MDR.html">
<span class="fa fa-skull-crossbones"></span>
@ -179,7 +186,7 @@
<h1>How to apply EUCAST rules</h1>
<h4 class="author">Matthijs S. Berends</h4>
<h4 class="date">23 February 2020</h4>
<h4 class="date">07 March 2020</h4>
<div class="hidden name"><code>EUCAST.Rmd</code></div>
@ -293,7 +300,7 @@
</tr>
</tbody>
</table>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1"></a><span class="kw"><a href="../reference/eucast_rules.html">eucast_rules</a></span>(data, <span class="dt">info =</span> <span class="ot">FALSE</span>)</span></code></pre></div>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1"></a><span class="kw"><a href="../reference/eucast_rules.html">eucast_rules</a></span>(data)</span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left">mo</th>

345
docs/articles/PCA.html Normal file
View File

@ -0,0 +1,345 @@
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>How to conduct principal component analysis (PCA) for AMR • AMR (for R)</title>
<!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png">
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png">
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png">
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png">
<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js" integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.3.7/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous">
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha256-U5ZEeKfGNOja007MMD3YBI0A3OSZOQbeG6z2f2Y0hu8=" crossorigin="anonymous"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.7.1/css/all.min.css" integrity="sha256-nAmazAk6vS34Xqo0BSrTb+abbtFlgsFK7NKSi6o7Y78=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.7.1/css/v4-shims.min.css" integrity="sha256-6qHlizsOWFskGlwVOKuns+D1nB6ssZrHQrNj1wGplHc=" crossorigin="anonymous">
<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.4/clipboard.min.js" integrity="sha256-FiZwavyI2V6+EXO1U+xzLG3IKldpiTFf3153ea9zikQ=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.9.4/headroom.min.js" integrity="sha256-DJFC1kqIhelURkuza0AvYal5RxMtpzLjFhsnVIeuk+U=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.9.4/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet">
<script src="../extra.js"></script><meta property="og:title" content="How to conduct principal component analysis (PCA) for AMR">
<meta property="og:description" content="">
<meta property="og:image" content="https://msberends.gitlab.io/AMR/logo.png">
<meta name="twitter:card" content="summary">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<div class="container template-article">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.0.1.9000</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../index.html">
<span class="fa fa-home"></span>
Home
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="fa fa-question-circle"></span>
How to
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="../articles/AMR.html">
<span class="fa fa-directions"></span>
Conduct AMR analysis
</a>
</li>
<li>
<a href="../articles/resistance_predict.html">
<span class="fa fa-dice"></span>
Predict antimicrobial resistance
</a>
</li>
<li>
<a href="../articles/PCA.html">
<span class="fa fa-compress"></span>
Conduct principal component analysis for AMR
</a>
</li>
<li>
<a href="../articles/MDR.html">
<span class="fa fa-skull-crossbones"></span>
Determine multi-drug resistance (MDR)
</a>
</li>
<li>
<a href="../articles/WHONET.html">
<span class="fa fa-globe-americas"></span>
Work with WHONET data
</a>
</li>
<li>
<a href="../articles/SPSS.html">
<span class="fa fa-file-upload"></span>
Import data from SPSS/SAS/Stata
</a>
</li>
<li>
<a href="../articles/EUCAST.html">
<span class="fa fa-exchange-alt"></span>
Apply EUCAST rules
</a>
</li>
<li>
<a href="../reference/mo_property.html">
<span class="fa fa-bug"></span>
Get properties of a microorganism
</a>
</li>
<li>
<a href="../reference/ab_property.html">
<span class="fa fa-capsules"></span>
Get properties of an antibiotic
</a>
</li>
<li>
<a href="../articles/benchmarks.html">
<span class="fa fa-shipping-fast"></span>
Other: benchmarks
</a>
</li>
</ul>
</li>
<li>
<a href="../reference/">
<span class="fa fa-book-open"></span>
Manual
</a>
</li>
<li>
<a href="../authors.html">
<span class="fa fa-users"></span>
Authors
</a>
</li>
<li>
<a href="../news/">
<span class="far fa far fa-newspaper"></span>
Changelog
</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://gitlab.com/msberends/AMR">
<span class="fab fa fab fa-gitlab"></span>
Source Code
</a>
</li>
<li>
<a href="../LICENSE-text.html">
<span class="fa fa-book"></span>
Licence
</a>
</li>
</ul>
</div>
<!--/.nav-collapse -->
</div>
<!--/.container -->
</div>
<!--/.navbar -->
</header><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1>How to conduct principal component analysis (PCA) for AMR</h1>
<h4 class="author">Matthijs S. Berends</h4>
<h4 class="date">07 March 2020</h4>
<div class="hidden name"><code>PCA.Rmd</code></div>
</div>
<p><strong>NOTE: This page will be updated soon, as the pca() function is currently being developed.</strong></p>
<div id="introduction" class="section level1">
<h1 class="hasAnchor">
<a href="#introduction" class="anchor"></a>Introduction</h1>
</div>
<div id="transforming" class="section level1">
<h1 class="hasAnchor">
<a href="#transforming" class="anchor"></a>Transforming</h1>
<p>For PCA, we need to transform our AMR data first. This is what the <code>example_isolates</code> data set in this package looks like:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1"></a><span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span>(AMR)</span>
<span id="cb1-2"><a href="#cb1-2"></a><span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span>(dplyr)</span>
<span id="cb1-3"><a href="#cb1-3"></a><span class="kw"><a href="https://dplyr.tidyverse.org/reference/reexports.html">glimpse</a></span>(example_isolates)</span>
<span id="cb1-4"><a href="#cb1-4"></a><span class="co"># Observations: 2,000</span></span>
<span id="cb1-5"><a href="#cb1-5"></a><span class="co"># Variables: 49</span></span>
<span id="cb1-6"><a href="#cb1-6"></a><span class="co"># $ date &lt;date&gt; 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002…</span></span>
<span id="cb1-7"><a href="#cb1-7"></a><span class="co"># $ hospital_id &lt;fct&gt; D, D, B, B, B, B, D, D, B, B, D, D, D, D, D, B, B, B,…</span></span>
<span id="cb1-8"><a href="#cb1-8"></a><span class="co"># $ ward_icu &lt;lgl&gt; FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, T…</span></span>
<span id="cb1-9"><a href="#cb1-9"></a><span class="co"># $ ward_clinical &lt;lgl&gt; TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, F…</span></span>
<span id="cb1-10"><a href="#cb1-10"></a><span class="co"># $ ward_outpatient &lt;lgl&gt; FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS…</span></span>
<span id="cb1-11"><a href="#cb1-11"></a><span class="co"># $ age &lt;dbl&gt; 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 7…</span></span>
<span id="cb1-12"><a href="#cb1-12"></a><span class="co"># $ gender &lt;chr&gt; "F", "F", "F", "F", "F", "F", "M", "M", "F", "F", "M"…</span></span>
<span id="cb1-13"><a href="#cb1-13"></a><span class="co"># $ patient_id &lt;chr&gt; "A77334", "A77334", "067927", "067927", "067927", "06…</span></span>
<span id="cb1-14"><a href="#cb1-14"></a><span class="co"># $ mo &lt;mo&gt; B_ESCHR_COLI, B_ESCHR_COLI, B_STPHY_EPDR, B_STPHY_EPDR…</span></span>
<span id="cb1-15"><a href="#cb1-15"></a><span class="co"># $ PEN &lt;rsi&gt; R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R,…</span></span>
<span id="cb1-16"><a href="#cb1-16"></a><span class="co"># $ OXA &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-17"><a href="#cb1-17"></a><span class="co"># $ FLC &lt;rsi&gt; NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA,…</span></span>
<span id="cb1-18"><a href="#cb1-18"></a><span class="co"># $ AMX &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-19"><a href="#cb1-19"></a><span class="co"># $ AMC &lt;rsi&gt; I, I, NA, NA, NA, NA, S, S, NA, NA, S, S, I, I, R, I,…</span></span>
<span id="cb1-20"><a href="#cb1-20"></a><span class="co"># $ AMP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-21"><a href="#cb1-21"></a><span class="co"># $ TZP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-22"><a href="#cb1-22"></a><span class="co"># $ CZO &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-23"><a href="#cb1-23"></a><span class="co"># $ FEP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-24"><a href="#cb1-24"></a><span class="co"># $ CXM &lt;rsi&gt; I, I, R, R, R, R, S, S, R, S, S, S, S, S, NA, S, S, R…</span></span>
<span id="cb1-25"><a href="#cb1-25"></a><span class="co"># $ FOX &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-26"><a href="#cb1-26"></a><span class="co"># $ CTX &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S,…</span></span>
<span id="cb1-27"><a href="#cb1-27"></a><span class="co"># $ CAZ &lt;rsi&gt; NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, S, …</span></span>
<span id="cb1-28"><a href="#cb1-28"></a><span class="co"># $ CRO &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S,…</span></span>
<span id="cb1-29"><a href="#cb1-29"></a><span class="co"># $ GEN &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-30"><a href="#cb1-30"></a><span class="co"># $ TOB &lt;rsi&gt; NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, S, S, N…</span></span>
<span id="cb1-31"><a href="#cb1-31"></a><span class="co"># $ AMK &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-32"><a href="#cb1-32"></a><span class="co"># $ KAN &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-33"><a href="#cb1-33"></a><span class="co"># $ TMP &lt;rsi&gt; R, R, S, S, R, R, R, R, S, S, NA, NA, S, S, S, S, S, …</span></span>
<span id="cb1-34"><a href="#cb1-34"></a><span class="co"># $ SXT &lt;rsi&gt; R, R, S, S, NA, NA, NA, NA, S, S, NA, NA, S, S, S, S,…</span></span>
<span id="cb1-35"><a href="#cb1-35"></a><span class="co"># $ NIT &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-36"><a href="#cb1-36"></a><span class="co"># $ FOS &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-37"><a href="#cb1-37"></a><span class="co"># $ LNZ &lt;rsi&gt; R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R…</span></span>
<span id="cb1-38"><a href="#cb1-38"></a><span class="co"># $ CIP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA,…</span></span>
<span id="cb1-39"><a href="#cb1-39"></a><span class="co"># $ MFX &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-40"><a href="#cb1-40"></a><span class="co"># $ VAN &lt;rsi&gt; R, R, S, S, S, S, S, S, S, S, NA, NA, R, R, R, R, R, …</span></span>
<span id="cb1-41"><a href="#cb1-41"></a><span class="co"># $ TEC &lt;rsi&gt; R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R…</span></span>
<span id="cb1-42"><a href="#cb1-42"></a><span class="co"># $ TCY &lt;rsi&gt; R, R, S, S, S, S, S, S, S, I, S, S, NA, NA, I, R, R, …</span></span>
<span id="cb1-43"><a href="#cb1-43"></a><span class="co"># $ TGC &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-44"><a href="#cb1-44"></a><span class="co"># $ DOX &lt;rsi&gt; NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R,…</span></span>
<span id="cb1-45"><a href="#cb1-45"></a><span class="co"># $ ERY &lt;rsi&gt; R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R,…</span></span>
<span id="cb1-46"><a href="#cb1-46"></a><span class="co"># $ CLI &lt;rsi&gt; NA, NA, NA, NA, NA, R, NA, NA, NA, NA, NA, NA, NA, NA…</span></span>
<span id="cb1-47"><a href="#cb1-47"></a><span class="co"># $ AZM &lt;rsi&gt; R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R,…</span></span>
<span id="cb1-48"><a href="#cb1-48"></a><span class="co"># $ IPM &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S,…</span></span>
<span id="cb1-49"><a href="#cb1-49"></a><span class="co"># $ MEM &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-50"><a href="#cb1-50"></a><span class="co"># $ MTR &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-51"><a href="#cb1-51"></a><span class="co"># $ CHL &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-52"><a href="#cb1-52"></a><span class="co"># $ COL &lt;rsi&gt; NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, R, …</span></span>
<span id="cb1-53"><a href="#cb1-53"></a><span class="co"># $ MUP &lt;rsi&gt; NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span></span>
<span id="cb1-54"><a href="#cb1-54"></a><span class="co"># $ RIF &lt;rsi&gt; R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R…</span></span></code></pre></div>
<p>Now to transform this to a data set with only resistance percentages per taxonomic order and genus:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1"></a>resistance_data &lt;-<span class="st"> </span>example_isolates <span class="op">%&gt;%</span><span class="st"> </span></span>
<span id="cb2-2"><a href="#cb2-2"></a><span class="st"> </span><span class="kw"><a href="https://dplyr.tidyverse.org/reference/group_by.html">group_by</a></span>(<span class="dt">order =</span> <span class="kw"><a href="../reference/mo_property.html">mo_order</a></span>(mo), <span class="co"># group on anything, like order</span></span>
<span id="cb2-3"><a href="#cb2-3"></a> <span class="dt">genus =</span> <span class="kw"><a href="../reference/mo_property.html">mo_genus</a></span>(mo)) <span class="op">%&gt;%</span><span class="st"> </span><span class="co"># and genus as we do here</span></span>
<span id="cb2-4"><a href="#cb2-4"></a><span class="st"> </span><span class="kw"><a href="https://dplyr.tidyverse.org/reference/summarise_all.html">summarise_if</a></span>(is.rsi, resistance) <span class="op">%&gt;%</span><span class="st"> </span><span class="co"># then get resistance of all drugs</span></span>
<span id="cb2-5"><a href="#cb2-5"></a><span class="st"> </span><span class="kw"><a href="https://dplyr.tidyverse.org/reference/select.html">select</a></span>(order, genus, AMC, CXM, CTX, </span>
<span id="cb2-6"><a href="#cb2-6"></a> CAZ, GEN, TOB, TMP, SXT) <span class="co"># and select only relevant columns</span></span>
<span id="cb2-7"><a href="#cb2-7"></a></span>
<span id="cb2-8"><a href="#cb2-8"></a><span class="kw"><a href="https://rdrr.io/r/utils/head.html">head</a></span>(resistance_data)</span>
<span id="cb2-9"><a href="#cb2-9"></a><span class="co"># # A tibble: 6 x 10</span></span>
<span id="cb2-10"><a href="#cb2-10"></a><span class="co"># # Groups: order [2]</span></span>
<span id="cb2-11"><a href="#cb2-11"></a><span class="co"># order genus AMC CXM CTX CAZ GEN TOB TMP SXT</span></span>
<span id="cb2-12"><a href="#cb2-12"></a><span class="co"># &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb2-13"><a href="#cb2-13"></a><span class="co"># 1 (unknown orde… Micrococcoides NA NA NA NA NA NA NA NA</span></span>
<span id="cb2-14"><a href="#cb2-14"></a><span class="co"># 2 Actinomycetal… Actinomyces NA NA NA NA NA NA NA NA</span></span>
<span id="cb2-15"><a href="#cb2-15"></a><span class="co"># 3 Actinomycetal… Corynebacterium NA NA NA NA NA NA NA NA</span></span>
<span id="cb2-16"><a href="#cb2-16"></a><span class="co"># 4 Actinomycetal… Dermabacter NA NA NA NA NA NA NA NA</span></span>
<span id="cb2-17"><a href="#cb2-17"></a><span class="co"># 5 Actinomycetal… Micrococcus NA NA NA NA NA NA NA NA</span></span>
<span id="cb2-18"><a href="#cb2-18"></a><span class="co"># 6 Actinomycetal… Propionibacter… NA NA NA NA NA NA NA NA</span></span></code></pre></div>
</div>
<div id="perform-principal-component-analysis" class="section level1">
<h1 class="hasAnchor">
<a href="#perform-principal-component-analysis" class="anchor"></a>Perform principal component analysis</h1>
<p>The new <code><a href="../reference/pca.html">pca()</a></code> function will automatically filter on rows that contain numeric values in all selected variables, so we now only need to do:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1"></a>pca_result &lt;-<span class="st"> </span><span class="kw"><a href="../reference/pca.html">pca</a></span>(resistance_data)</span>
<span id="cb3-2"><a href="#cb3-2"></a><span class="co"># </span><span class="al">NOTE</span><span class="co">: Columns selected for PCA: AMC/CXM/CTX/CAZ/GEN/TOB/TMP/SXT.</span></span>
<span id="cb3-3"><a href="#cb3-3"></a><span class="co"># Total observations available: 7.</span></span></code></pre></div>
<p>The result can be reviewed with the good old <code><a href="https://rdrr.io/r/base/summary.html">summary()</a></code> function:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1"></a><span class="kw"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(pca_result)</span>
<span id="cb4-2"><a href="#cb4-2"></a><span class="co"># Importance of components:</span></span>
<span id="cb4-3"><a href="#cb4-3"></a><span class="co"># PC1 PC2 PC3 PC4 PC5 PC6 PC7</span></span>
<span id="cb4-4"><a href="#cb4-4"></a><span class="co"># Standard deviation 2.1580 1.6783 0.61282 0.33017 0.20150 0.03190 2.123e-16</span></span>
<span id="cb4-5"><a href="#cb4-5"></a><span class="co"># Proportion of Variance 0.5821 0.3521 0.04694 0.01363 0.00508 0.00013 0.000e+00</span></span>
<span id="cb4-6"><a href="#cb4-6"></a><span class="co"># Cumulative Proportion 0.5821 0.9342 0.98117 0.99480 0.99987 1.00000 1.000e+00</span></span></code></pre></div>
<p>Good news. The first two components explain a total of 93.4% of the variance (see the PC1 and PC2 values of the <em>Proportion of Variance</em>. We can create a so-called biplot with the base R <code><a href="https://rdrr.io/r/stats/biplot.html">biplot()</a></code> function, to see which antimicrobial resistance per drug explain the difference per microorganism.</p>
</div>
<div id="plotting-the-results" class="section level1">
<h1 class="hasAnchor">
<a href="#plotting-the-results" class="anchor"></a>Plotting the results</h1>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1"></a><span class="kw"><a href="https://rdrr.io/r/stats/biplot.html">biplot</a></span>(pca_result)</span></code></pre></div>
<p><img src="PCA_files/figure-html/unnamed-chunk-5-1.png" width="750"></p>
<p>But we cant see the explanation of the points. Perhaps this works better with the new <code><a href="../reference/ggplot_pca.html">ggplot_pca()</a></code> function, that automatically adds the right labels and even groups:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1"></a><span class="kw"><a href="../reference/ggplot_pca.html">ggplot_pca</a></span>(pca_result)</span></code></pre></div>
<p><img src="PCA_files/figure-html/unnamed-chunk-6-1.png" width="750"></p>
<p>You can also print an ellipse per group, and edit the appearance:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1"></a><span class="kw"><a href="../reference/ggplot_pca.html">ggplot_pca</a></span>(pca_result, <span class="dt">ellipse =</span> <span class="ot">TRUE</span>) <span class="op">+</span></span>
<span id="cb7-2"><a href="#cb7-2"></a><span class="st"> </span>ggplot2<span class="op">::</span><span class="kw"><a href="https://ggplot2.tidyverse.org/reference/labs.html">labs</a></span>(<span class="dt">title =</span> <span class="st">"An AMR/PCA biplot!"</span>)</span></code></pre></div>
<p><img src="PCA_files/figure-html/unnamed-chunk-7-1.png" width="750"></p>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="sidebar">
<div id="tocnav">
<h2 class="hasAnchor">
<a href="#tocnav" class="anchor"></a>Contents</h2>
<ul class="nav nav-pills nav-stacked">
<li><a href="#introduction">Introduction</a></li>
<li><a href="#transforming">Transforming</a></li>
<li><a href="#perform-principal-component-analysis">Perform principal component analysis</a></li>
<li><a href="#plotting-the-results">Plotting the results</a></li>
</ul>
</div>
</div>
</div>
<footer><div class="copyright">
<p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/">Matthijs S. Berends</a>, <a href="https://www.rug.nl/staff/c.f.luz/">Christian F. Luz</a>, <a href="https://www.rug.nl/staff/a.w.friedrich/">Alexander W. Friedrich</a>, <a href="https://www.rug.nl/staff/b.sinha/">Bhanu N. M. Sinha</a>, <a href="https://www.rug.nl/staff/c.j.albers/">Casper J. Albers</a>, <a href="https://www.rug.nl/staff/c.glasner/">Corinna Glasner</a>.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.4.1.</p>
</div>
</footer>
</div>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

View File

@ -39,7 +39,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.0.1</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.0.1.9000</span>
</span>
</div>
@ -75,6 +75,13 @@
Predict antimicrobial resistance
</a>
</li>
<li>
<a href="../articles/PCA.html">
<span class="fa fa-compress"></span>
Conduct principal component analysis for AMR
</a>
</li>
<li>
<a href="../articles/MDR.html">
<span class="fa fa-skull-crossbones"></span>
@ -179,7 +186,7 @@
<h1>Benchmarks</h1>
<h4 class="author">Matthijs S. Berends</h4>
<h4 class="date">23 February 2020</h4>
<h4 class="date">07 March 2020</h4>
<div class="hidden name"><code>benchmarks.Rmd</code></div>
@ -213,21 +220,36 @@
<span id="cb2-16"><a href="#cb2-16"></a> <span class="dt">times =</span> <span class="dv">10</span>)</span>
<span id="cb2-17"><a href="#cb2-17"></a><span class="kw"><a href="https://rdrr.io/r/base/print.html">print</a></span>(S.aureus, <span class="dt">unit =</span> <span class="st">"ms"</span>, <span class="dt">signif =</span> <span class="dv">2</span>)</span>
<span id="cb2-18"><a href="#cb2-18"></a><span class="co"># Unit: milliseconds</span></span>
<span id="cb2-19"><a href="#cb2-19"></a><span class="co"># expr min lq mean median uq max neval</span></span>
<span id="cb2-20"><a href="#cb2-20"></a><span class="co"># as.mo("sau") 8.2 8.5 12.0 9.1 9.5 34 10</span></span>
<span id="cb2-21"><a href="#cb2-21"></a><span class="co"># as.mo("stau") 36.0 37.0 50.0 40.0 65.0 82 10</span></span>
<span id="cb2-22"><a href="#cb2-22"></a><span class="co"># as.mo("STAU") 38.0 41.0 49.0 41.0 64.0 72 10</span></span>
<span id="cb2-23"><a href="#cb2-23"></a><span class="co"># as.mo("staaur") 8.4 8.9 9.2 9.2 9.3 10 10</span></span>
<span id="cb2-24"><a href="#cb2-24"></a><span class="co"># as.mo("STAAUR") 8.4 8.7 13.0 9.4 9.5 43 10</span></span>
<span id="cb2-25"><a href="#cb2-25"></a><span class="co"># as.mo("S. aureus") 14.0 15.0 30.0 37.0 40.0 44 10</span></span>
<span id="cb2-26"><a href="#cb2-26"></a><span class="co"># as.mo("S aureus") 14.0 15.0 43.0 15.0 37.0 250 10</span></span>
<span id="cb2-27"><a href="#cb2-27"></a><span class="co"># as.mo("Staphylococcus aureus") 4.7 5.0 7.4 5.1 5.5 28 10</span></span>
<span id="cb2-28"><a href="#cb2-28"></a><span class="co"># as.mo("Staphylococcus aureus (MRSA)") 660.0 690.0 720.0 730.0 730.0 790 10</span></span>
<span id="cb2-29"><a href="#cb2-29"></a><span class="co"># as.mo("Sthafilokkockus aaureuz") 350.0 380.0 420.0 400.0 440.0 520 10</span></span>
<span id="cb2-30"><a href="#cb2-30"></a><span class="co"># as.mo("MRSA") 8.1 8.5 12.0 9.1 9.3 38 10</span></span>
<span id="cb2-31"><a href="#cb2-31"></a><span class="co"># as.mo("VISA") 24.0 26.0 35.0 28.0 46.0 52 10</span></span>
<span id="cb2-32"><a href="#cb2-32"></a><span class="co"># as.mo("VRSA") 24.0 26.0 35.0 29.0 47.0 57 10</span></span>
<span id="cb2-33"><a href="#cb2-33"></a><span class="co"># as.mo(22242419) 130.0 130.0 150.0 140.0 150.0 240 10</span></span></code></pre></div>
<span id="cb2-19"><a href="#cb2-19"></a><span class="co"># expr min lq mean median uq max</span></span>
<span id="cb2-20"><a href="#cb2-20"></a><span class="co"># as.mo("sau") 8.0 8.2 9.1 8.4 8.5 16</span></span>
<span id="cb2-21"><a href="#cb2-21"></a><span class="co"># as.mo("stau") 37.0 40.0 51.0 52.0 60.0 76</span></span>
<span id="cb2-22"><a href="#cb2-22"></a><span class="co"># as.mo("STAU") 36.0 38.0 58.0 60.0 68.0 100</span></span>
<span id="cb2-23"><a href="#cb2-23"></a><span class="co"># as.mo("staaur") 8.2 8.4 9.5 8.6 8.9 14</span></span>
<span id="cb2-24"><a href="#cb2-24"></a><span class="co"># as.mo("STAAUR") 8.2 8.3 15.0 9.2 14.0 53</span></span>
<span id="cb2-25"><a href="#cb2-25"></a><span class="co"># as.mo("S. aureus") 13.0 21.0 64.0 21.0 45.0 260</span></span>
<span id="cb2-26"><a href="#cb2-26"></a><span class="co"># as.mo("S aureus") 13.0 14.0 33.0 24.0 44.0 76</span></span>
<span id="cb2-27"><a href="#cb2-27"></a><span class="co"># as.mo("Staphylococcus aureus") 4.7 4.8 9.9 6.8 7.9 42</span></span>
<span id="cb2-28"><a href="#cb2-28"></a><span class="co"># as.mo("Staphylococcus aureus (MRSA)") 620.0 640.0 770.0 700.0 860.0 1100</span></span>
<span id="cb2-29"><a href="#cb2-29"></a><span class="co"># as.mo("Sthafilokkockus aaureuz") 330.0 350.0 460.0 490.0 560.0 570</span></span>
<span id="cb2-30"><a href="#cb2-30"></a><span class="co"># as.mo("MRSA") 8.1 8.3 14.0 12.0 13.0 48</span></span>
<span id="cb2-31"><a href="#cb2-31"></a><span class="co"># as.mo("VISA") 24.0 25.0 34.0 26.0 38.0 59</span></span>
<span id="cb2-32"><a href="#cb2-32"></a><span class="co"># as.mo("VRSA") 23.0 24.0 37.0 27.0 39.0 78</span></span>
<span id="cb2-33"><a href="#cb2-33"></a><span class="co"># as.mo(22242419) 120.0 130.0 150.0 140.0 160.0 240</span></span>
<span id="cb2-34"><a href="#cb2-34"></a><span class="co"># neval</span></span>
<span id="cb2-35"><a href="#cb2-35"></a><span class="co"># 10</span></span>
<span id="cb2-36"><a href="#cb2-36"></a><span class="co"># 10</span></span>
<span id="cb2-37"><a href="#cb2-37"></a><span class="co"># 10</span></span>
<span id="cb2-38"><a href="#cb2-38"></a><span class="co"># 10</span></span>
<span id="cb2-39"><a href="#cb2-39"></a><span class="co"># 10</span></span>
<span id="cb2-40"><a href="#cb2-40"></a><span class="co"># 10</span></span>
<span id="cb2-41"><a href="#cb2-41"></a><span class="co"># 10</span></span>
<span id="cb2-42"><a href="#cb2-42"></a><span class="co"># 10</span></span>
<span id="cb2-43"><a href="#cb2-43"></a><span class="co"># 10</span></span>
<span id="cb2-44"><a href="#cb2-44"></a><span class="co"># 10</span></span>
<span id="cb2-45"><a href="#cb2-45"></a><span class="co"># 10</span></span>
<span id="cb2-46"><a href="#cb2-46"></a><span class="co"># 10</span></span>
<span id="cb2-47"><a href="#cb2-47"></a><span class="co"># 10</span></span>
<span id="cb2-48"><a href="#cb2-48"></a><span class="co"># 10</span></span></code></pre></div>
<p><img src="benchmarks_files/figure-html/unnamed-chunk-4-1.png" width="562.5"></p>
<p>In the table above, all measurements are shown in milliseconds (thousands of seconds). A value of 5 milliseconds means it can determine 200 input values per second. It case of 100 milliseconds, this is only 10 input values per second.</p>
<p>To achieve this speed, the <code>as.mo</code> function also takes into account the prevalence of human pathogenic microorganisms. The downside of this is of course that less prevalent microorganisms will be determined less fast. See this example for the ID of <em>Methanosarcina semesiae</em> (<code>B_MTHNSR_SEMS</code>), a bug probably never found before in humans:</p>
@ -239,19 +261,19 @@
<span id="cb3-6"><a href="#cb3-6"></a> <span class="dt">times =</span> <span class="dv">10</span>)</span>
<span id="cb3-7"><a href="#cb3-7"></a><span class="kw"><a href="https://rdrr.io/r/base/print.html">print</a></span>(M.semesiae, <span class="dt">unit =</span> <span class="st">"ms"</span>, <span class="dt">signif =</span> <span class="dv">4</span>)</span>
<span id="cb3-8"><a href="#cb3-8"></a><span class="co"># Unit: milliseconds</span></span>
<span id="cb3-9"><a href="#cb3-9"></a><span class="co"># expr min lq mean median uq</span></span>
<span id="cb3-10"><a href="#cb3-10"></a><span class="co"># as.mo("metsem") 1497.000 1536.000 1604.00 1575.00 1693.000</span></span>
<span id="cb3-11"><a href="#cb3-11"></a><span class="co"># as.mo("METSEM") 1472.000 1510.000 1563.00 1563.00 1615.000</span></span>
<span id="cb3-12"><a href="#cb3-12"></a><span class="co"># as.mo("M. semesiae") 14.520 14.760 22.18 15.39 36.430</span></span>
<span id="cb3-13"><a href="#cb3-13"></a><span class="co"># as.mo("M. semesiae") 14.310 14.630 19.94 15.18 16.080</span></span>
<span id="cb3-14"><a href="#cb3-14"></a><span class="co"># as.mo("Methanosarcina semesiae") 5.376 5.482 8.41 5.81 5.911</span></span>
<span id="cb3-15"><a href="#cb3-15"></a><span class="co"># max neval</span></span>
<span id="cb3-16"><a href="#cb3-16"></a><span class="co"># 1709.00 10</span></span>
<span id="cb3-17"><a href="#cb3-17"></a><span class="co"># 1641.00 10</span></span>
<span id="cb3-18"><a href="#cb3-18"></a><span class="co"># 40.57 10</span></span>
<span id="cb3-19"><a href="#cb3-19"></a><span class="co"># 40.27 10</span></span>
<span id="cb3-20"><a href="#cb3-20"></a><span class="co"># 32.27 10</span></span></code></pre></div>
<p>That takes 5.7 times as much time on average. We can conclude that looking up arbitrary codes of less prevalent microorganisms is the worst way to go, in terms of calculation performance. Full names (like <em>Methanosarcina semesiae</em>) are always very fast and only take some thousands of seconds to coerce - they are the most probable input from most data sets.</p>
<span id="cb3-9"><a href="#cb3-9"></a><span class="co"># expr min lq mean median uq</span></span>
<span id="cb3-10"><a href="#cb3-10"></a><span class="co"># as.mo("metsem") 1349.000 1352.000 1597.000 1411.000 1983.000</span></span>
<span id="cb3-11"><a href="#cb3-11"></a><span class="co"># as.mo("METSEM") 1316.000 2146.000 2069.000 2226.000 2245.000</span></span>
<span id="cb3-12"><a href="#cb3-12"></a><span class="co"># as.mo("M. semesiae") 13.330 14.110 32.960 21.840 53.090</span></span>
<span id="cb3-13"><a href="#cb3-13"></a><span class="co"># as.mo("M. semesiae") 13.730 20.960 29.720 21.430 40.000</span></span>
<span id="cb3-14"><a href="#cb3-14"></a><span class="co"># as.mo("Methanosarcina semesiae") 4.802 5.171 6.667 6.551 8.036</span></span>
<span id="cb3-15"><a href="#cb3-15"></a><span class="co"># max neval</span></span>
<span id="cb3-16"><a href="#cb3-16"></a><span class="co"># 2184.000 10</span></span>
<span id="cb3-17"><a href="#cb3-17"></a><span class="co"># 2337.000 10</span></span>
<span id="cb3-18"><a href="#cb3-18"></a><span class="co"># 62.780 10</span></span>
<span id="cb3-19"><a href="#cb3-19"></a><span class="co"># 64.510 10</span></span>
<span id="cb3-20"><a href="#cb3-20"></a><span class="co"># 8.735 10</span></span></code></pre></div>
<p>That takes 6.1 times as much time on average. We can conclude that looking up arbitrary codes of less prevalent microorganisms is the worst way to go, in terms of calculation performance. Full names (like <em>Methanosarcina semesiae</em>) are always very fast and only take some thousands of seconds to coerce - they are the most probable input from most data sets.</p>
<p>In the figure below, we compare <em>Escherichia coli</em> (which is very common) with <em>Prevotella brevis</em> (which is moderately common) and with <em>Methanosarcina semesiae</em> (which is uncommon):</p>
<p><img src="benchmarks_files/figure-html/unnamed-chunk-6-1.png" width="900"></p>
<p>Uncommon microorganisms take a lot more time than common microorganisms. To relieve this pitfall and further improve performance, two important calculations take almost no time at all: <strong>repetitive results</strong> and <strong>already precalculated results</strong>.</p>
@ -285,8 +307,8 @@
<span id="cb4-24"><a href="#cb4-24"></a><span class="kw"><a href="https://rdrr.io/r/base/print.html">print</a></span>(run_it, <span class="dt">unit =</span> <span class="st">"ms"</span>, <span class="dt">signif =</span> <span class="dv">3</span>)</span>
<span id="cb4-25"><a href="#cb4-25"></a><span class="co"># Unit: milliseconds</span></span>
<span id="cb4-26"><a href="#cb4-26"></a><span class="co"># expr min lq mean median uq max neval</span></span>
<span id="cb4-27"><a href="#cb4-27"></a><span class="co"># mo_name(x) 568 614 651 634 657 1170 100</span></span></code></pre></div>
<p>So transforming 500,000 values (!!) of 50 unique values only takes 0.63 seconds (634 ms). You only lose time on your unique input values.</p>
<span id="cb4-27"><a href="#cb4-27"></a><span class="co"># mo_name(x) 564 605 673 630 657 1100 100</span></span></code></pre></div>
<p>So transforming 500,000 values (!!) of 50 unique values only takes 0.63 seconds (630 ms). You only lose time on your unique input values.</p>
</div>
<div id="precalculated-results" class="section level3">
<h3 class="hasAnchor">
@ -298,10 +320,10 @@
<span id="cb5-4"><a href="#cb5-4"></a> <span class="dt">times =</span> <span class="dv">10</span>)</span>
<span id="cb5-5"><a href="#cb5-5"></a><span class="kw"><a href="https://rdrr.io/r/base/print.html">print</a></span>(run_it, <span class="dt">unit =</span> <span class="st">"ms"</span>, <span class="dt">signif =</span> <span class="dv">3</span>)</span>
<span id="cb5-6"><a href="#cb5-6"></a><span class="co"># Unit: milliseconds</span></span>
<span id="cb5-7"><a href="#cb5-7"></a><span class="co"># expr min lq mean median uq max neval</span></span>
<span id="cb5-8"><a href="#cb5-8"></a><span class="co"># A 6.630 6.790 7.330 7.230 7.690 8.39 10</span></span>
<span id="cb5-9"><a href="#cb5-9"></a><span class="co"># B 13.900 14.300 19.000 14.700 17.000 53.00 10</span></span>
<span id="cb5-10"><a href="#cb5-10"></a><span class="co"># C 0.847 0.875 0.947 0.901 0.977 1.16 10</span></span></code></pre></div>
<span id="cb5-7"><a href="#cb5-7"></a><span class="co"># expr min lq mean median uq max neval</span></span>
<span id="cb5-8"><a href="#cb5-8"></a><span class="co"># A 6.58 6.590 7.340 6.630 6.780 13.00 10</span></span>
<span id="cb5-9"><a href="#cb5-9"></a><span class="co"># B 13.50 13.700 18.700 13.900 14.600 60.80 10</span></span>
<span id="cb5-10"><a href="#cb5-10"></a><span class="co"># C 0.72 0.863 0.917 0.898 0.935 1.26 10</span></span></code></pre></div>
<p>So going from <code><a href="../reference/mo_property.html">mo_name("Staphylococcus aureus")</a></code> to <code>"Staphylococcus aureus"</code> takes 0.0009 seconds - it doesnt even start calculating <em>if the result would be the same as the expected resulting value</em>. That goes for all helper functions:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1"></a>run_it &lt;-<span class="st"> </span><span class="kw"><a href="https://rdrr.io/pkg/microbenchmark/man/microbenchmark.html">microbenchmark</a></span>(<span class="dt">A =</span> <span class="kw"><a href="../reference/mo_property.html">mo_species</a></span>(<span class="st">"aureus"</span>),</span>
<span id="cb6-2"><a href="#cb6-2"></a> <span class="dt">B =</span> <span class="kw"><a href="../reference/mo_property.html">mo_genus</a></span>(<span class="st">"Staphylococcus"</span>),</span>
@ -315,14 +337,14 @@
<span id="cb6-10"><a href="#cb6-10"></a><span class="kw"><a href="https://rdrr.io/r/base/print.html">print</a></span>(run_it, <span class="dt">unit =</span> <span class="st">"ms"</span>, <span class="dt">signif =</span> <span class="dv">3</span>)</span>
<span id="cb6-11"><a href="#cb6-11"></a><span class="co"># Unit: milliseconds</span></span>
<span id="cb6-12"><a href="#cb6-12"></a><span class="co"># expr min lq mean median uq max neval</span></span>
<span id="cb6-13"><a href="#cb6-13"></a><span class="co"># A 0.476 0.485 0.501 0.498 0.504 0.554 10</span></span>
<span id="cb6-14"><a href="#cb6-14"></a><span class="co"># B 0.515 0.521 0.548 0.545 0.553 0.614 10</span></span>
<span id="cb6-15"><a href="#cb6-15"></a><span class="co"># C 0.710 0.791 0.870 0.842 0.855 1.330 10</span></span>
<span id="cb6-16"><a href="#cb6-16"></a><span class="co"># D 0.491 0.524 0.539 0.535 0.546 0.613 10</span></span>
<span id="cb6-17"><a href="#cb6-17"></a><span class="co"># E 0.488 0.500 0.583 0.541 0.635 0.830 10</span></span>
<span id="cb6-18"><a href="#cb6-18"></a><span class="co"># F 0.477 0.488 0.509 0.495 0.519 0.569 10</span></span>
<span id="cb6-19"><a href="#cb6-19"></a><span class="co"># G 0.473 0.490 0.507 0.498 0.534 0.547 10</span></span>
<span id="cb6-20"><a href="#cb6-20"></a><span class="co"># H 0.477 0.486 0.500 0.494 0.509 0.561 10</span></span></code></pre></div>
<span id="cb6-13"><a href="#cb6-13"></a><span class="co"># A 0.499 0.511 0.516 0.517 0.522 0.544 10</span></span>
<span id="cb6-14"><a href="#cb6-14"></a><span class="co"># B 0.532 0.539 0.550 0.542 0.563 0.592 10</span></span>
<span id="cb6-15"><a href="#cb6-15"></a><span class="co"># C 0.718 0.787 0.832 0.843 0.889 0.904 10</span></span>
<span id="cb6-16"><a href="#cb6-16"></a><span class="co"># D 0.538 0.548 0.566 0.567 0.571 0.607 10</span></span>
<span id="cb6-17"><a href="#cb6-17"></a><span class="co"># E 0.503 0.509 0.515 0.513 0.516 0.549 10</span></span>
<span id="cb6-18"><a href="#cb6-18"></a><span class="co"># F 0.502 0.504 0.514 0.511 0.519 0.539 10</span></span>
<span id="cb6-19"><a href="#cb6-19"></a><span class="co"># G 0.493 0.513 0.538 0.514 0.536 0.684 10</span></span>
<span id="cb6-20"><a href="#cb6-20"></a><span class="co"># H 0.499 0.501 0.509 0.505 0.516 0.531 10</span></span></code></pre></div>
<p>Of course, when running <code><a href="../reference/mo_property.html">mo_phylum("Firmicutes")</a></code> the function has zero knowledge about the actual microorganism, namely <em>S. aureus</em>. But since the result would be <code>"Firmicutes"</code> anyway, there is no point in calculating the result. And because this package knows all phyla of all known bacteria (according to the Catalogue of Life), it can just return the initial value immediately.</p>
</div>
<div id="results-in-other-languages" class="section level3">
@ -349,13 +371,13 @@
<span id="cb7-18"><a href="#cb7-18"></a><span class="kw"><a href="https://rdrr.io/r/base/print.html">print</a></span>(run_it, <span class="dt">unit =</span> <span class="st">"ms"</span>, <span class="dt">signif =</span> <span class="dv">4</span>)</span>
<span id="cb7-19"><a href="#cb7-19"></a><span class="co"># Unit: milliseconds</span></span>
<span id="cb7-20"><a href="#cb7-20"></a><span class="co"># expr min lq mean median uq max neval</span></span>
<span id="cb7-21"><a href="#cb7-21"></a><span class="co"># en 24.69 25.88 32.93 26.49 28.24 165.60 100</span></span>
<span id="cb7-22"><a href="#cb7-22"></a><span class="co"># de 26.07 27.22 32.82 28.08 29.90 75.78 100</span></span>
<span id="cb7-23"><a href="#cb7-23"></a><span class="co"># nl 32.01 33.49 39.63 34.78 36.68 78.48 100</span></span>
<span id="cb7-24"><a href="#cb7-24"></a><span class="co"># es 25.66 27.31 32.25 28.04 29.53 68.15 100</span></span>
<span id="cb7-25"><a href="#cb7-25"></a><span class="co"># it 25.69 27.13 32.40 28.22 30.01 62.64 100</span></span>
<span id="cb7-26"><a href="#cb7-26"></a><span class="co"># fr 25.77 27.22 33.72 28.03 30.46 71.35 100</span></span>
<span id="cb7-27"><a href="#cb7-27"></a><span class="co"># pt 25.65 27.12 31.94 27.78 29.08 60.06 100</span></span></code></pre></div>
<span id="cb7-21"><a href="#cb7-21"></a><span class="co"># en 23.72 25.30 30.59 25.77 26.99 76.03 100</span></span>
<span id="cb7-22"><a href="#cb7-22"></a><span class="co"># de 24.88 26.81 31.11 27.47 28.93 69.86 100</span></span>
<span id="cb7-23"><a href="#cb7-23"></a><span class="co"># nl 30.65 32.77 38.07 33.70 35.23 74.79 100</span></span>
<span id="cb7-24"><a href="#cb7-24"></a><span class="co"># es 24.89 26.33 32.10 27.13 28.87 68.79 100</span></span>
<span id="cb7-25"><a href="#cb7-25"></a><span class="co"># it 24.78 26.72 33.51 27.53 28.91 166.60 100</span></span>
<span id="cb7-26"><a href="#cb7-26"></a><span class="co"># fr 24.84 26.58 31.50 27.13 28.29 67.38 100</span></span>
<span id="cb7-27"><a href="#cb7-27"></a><span class="co"># pt 24.88 26.58 32.38 27.50 29.20 79.30 100</span></span></code></pre></div>
<p>Currently supported are German, Dutch, Spanish, Italian, French and Portuguese.</p>
</div>
</div>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 94 KiB

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

After

Width:  |  Height:  |  Size: 56 KiB

View File

@ -78,7 +78,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.0.1</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.0.1.9000</span>
</span>
</div>
@ -114,6 +114,13 @@
Predict antimicrobial resistance
</a>
</li>
<li>
<a href="../articles/PCA.html">
<span class="fa fa-compress"></span>
Conduct principal component analysis for AMR
</a>
</li>
<li>
<a href="../articles/MDR.html">
<span class="fa fa-skull-crossbones"></span>
@ -226,6 +233,7 @@
<li><a href="AMR.html">How to conduct AMR analysis</a></li>
<li><a href="EUCAST.html">How to apply EUCAST rules</a></li>
<li><a href="MDR.html">How to determine multi-drug resistance (MDR)</a></li>
<li><a href="PCA.html">How to conduct principal component analysis (PCA) for AMR</a></li>
<li><a href="SPSS.html">How to import data from SPSS / SAS / Stata</a></li>
<li><a href="WHONET.html">How to work with WHONET data</a></li>
<li><a href="benchmarks.html">Benchmarks</a></li>