1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-28 17:44:35 +01:00

Compare commits

..

No commits in common. "1b499bf012c0c082a6538c754f0942ce16794237" and "3829311dd3baffabc194aec16f8cfd2b723e3d2c" have entirely different histories.

35 changed files with 213 additions and 733 deletions

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 2.0.0.9031 Version: 2.0.0.9028
Date: 2023-07-10 Date: 2023-07-08
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,4 +1,4 @@
# AMR 2.0.0.9031 # AMR 2.0.0.9028
## New ## New
* Clinical breakpoints and intrinsic resistance of EUCAST 2023 and CLSI 2023 have been added for `as.sir()`. EUCAST 2023 (v13.0) is now the new default guideline for all MIC and disks diffusion interpretations * Clinical breakpoints and intrinsic resistance of EUCAST 2023 and CLSI 2023 have been added for `as.sir()`. EUCAST 2023 (v13.0) is now the new default guideline for all MIC and disks diffusion interpretations
@ -15,10 +15,6 @@
## Changed ## Changed
* Updated algorithm of `as.mo()` by giving more weight to fungi * Updated algorithm of `as.mo()` by giving more weight to fungi
* `mo_rank()` now returns `NA` for 'unknown' microorganisms (`B_ANAER`, `B_ANAER-NEG`, `B_ANAER-POS`, `B_GRAMN`, `B_GRAMP`, `F_FUNGUS`, `F_YEAST`, and `UNKNOWN`) * `mo_rank()` now returns `NA` for 'unknown' microorganisms (`B_ANAER`, `B_ANAER-NEG`, `B_ANAER-POS`, `B_GRAMN`, `B_GRAMP`, `F_FUNGUS`, `F_YEAST`, and `UNKNOWN`)
* When printing MO codes in a tibble, a mouse-hover now shows the full name of the microorganism
* Plots for MIC and disk diffusion values:
* Now have settable arguments for breakpoint type and PK/PD, like `as.sir()`
* Will now contain the name of the guideline table in the subtitle of the plot
* Fixed formatting for `sir_interpretation_history()` * Fixed formatting for `sir_interpretation_history()`
* Fixed some WHONET codes for microorganisms and consequently a couple of entries in `clinical_breakpoints` * Fixed some WHONET codes for microorganisms and consequently a couple of entries in `clinical_breakpoints`
* Fixed a bug for `as.mo()` that led to coercion of `NA` values when using custom microorganism codes * Fixed a bug for `as.mo()` that led to coercion of `NA` values when using custom microorganism codes
@ -30,7 +26,6 @@
* Updated the code table in `microorganisms.codes` * Updated the code table in `microorganisms.codes`
* Fixed an endless loop if using `reference_df` in `as.mo()` * Fixed an endless loop if using `reference_df` in `as.mo()`
* Fixed bug for indicating UTIs in `as.sir()` * Fixed bug for indicating UTIs in `as.sir()`
* Greatly improved speed of `as.sir()`
# AMR 2.0.0 # AMR 2.0.0

View File

@ -60,19 +60,19 @@ EUCAST_VERSION_EXPERT_RULES <- list(
version_txt = "v3.3", version_txt = "v3.3",
year = 2021, year = 2021,
title = "'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes'", title = "'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes'",
url = "https://www.eucast.org/expert_rules_and_expected_phenotypes" url = "https://www.eucast.org/expert_rules_and_expected_phenotypes/"
), ),
"3.2" = list( "3.2" = list(
version_txt = "v3.2", version_txt = "v3.2",
year = 2020, year = 2020,
title = "'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes'", title = "'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes'",
url = "https://www.eucast.org/expert_rules_and_expected_phenotypes" url = "https://www.eucast.org/expert_rules_and_expected_phenotypes/"
), ),
"3.1" = list( "3.1" = list(
version_txt = "v3.1", version_txt = "v3.1",
year = 2016, year = 2016,
title = "'EUCAST Expert Rules, Intrinsic Resistance and Exceptional Phenotypes'", title = "'EUCAST Expert Rules, Intrinsic Resistance and Exceptional Phenotypes'",
url = "https://www.eucast.org/expert_rules_and_expected_phenotypes" url = "https://www.eucast.org/expert_rules_and_expected_phenotypes/"
) )
) )
# EUCAST_VERSION_RESISTANTPHENOTYPES <- list( # EUCAST_VERSION_RESISTANTPHENOTYPES <- list(
@ -80,7 +80,7 @@ EUCAST_VERSION_EXPERT_RULES <- list(
# version_txt = "v1.2", # version_txt = "v1.2",
# year = 2023, # year = 2023,
# title = "'Expected Resistant Phenotypes'", # title = "'Expected Resistant Phenotypes'",
# url = "https://www.eucast.org/expert_rules_and_expected_phenotypes" # url = "https://www.eucast.org/expert_rules_and_expected_phenotypes/"
# ) # )
# ) # )

View File

@ -1237,24 +1237,24 @@ font_grey_bg <- function(..., collapse = " ") {
} }
font_red_bg <- function(..., collapse = " ") { font_red_bg <- function(..., collapse = " ") {
# this is #ed553b (picked to be colourblind-safe with other SIR colours) # this is #ed553b (picked to be colourblind-safe with other SIR colours)
try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;203m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse), before = "\033[48;5;203m", after = "\033[49m", collapse = collapse)
} }
font_orange_bg <- function(..., collapse = " ") { font_orange_bg <- function(..., collapse = " ") {
# this is #f6d55c (picked to be colourblind-safe with other SIR colours) # this is #f6d55c (picked to be colourblind-safe with other SIR colours)
try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;222m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse), before = "\033[48;5;222m", after = "\033[49m", collapse = collapse)
} }
font_yellow_bg <- function(..., collapse = " ") { font_yellow_bg <- function(..., collapse = " ") {
try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;228m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse), before = "\033[48;5;228m", after = "\033[49m", collapse = collapse)
} }
font_green_bg <- function(..., collapse = " ") { font_green_bg <- function(..., collapse = " ") {
# this is #3caea3 (picked to be colourblind-safe with other SIR colours) # this is #3caea3 (picked to be colourblind-safe with other SIR colours)
try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;79m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse), before = "\033[48;5;79m", after = "\033[49m", collapse = collapse)
} }
font_purple_bg <- function(..., collapse = " ") { font_purple_bg <- function(..., collapse = " ") {
try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;89m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse), before = "\033[48;5;89m", after = "\033[49m", collapse = collapse)
} }
font_rose_bg <- function(..., collapse = " ") { font_rose_bg <- function(..., collapse = " ") {
try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;217m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse), before = "\033[48;5;217m", after = "\033[49m", collapse = collapse)
} }
font_na <- function(..., collapse = " ") { font_na <- function(..., collapse = " ") {
font_red(..., collapse = collapse) font_red(..., collapse = collapse)
@ -1533,17 +1533,19 @@ readRDS_AMR <- function(file, refhook = NULL) {
# Faster data.table implementations ---- # Faster data.table implementations ----
match <- function(x, table, ...) { match <- function(x, table, ...) {
if (!is.null(AMR_env$chmatch) && inherits(x, "character") && inherits(table, "character")) { chmatch <- import_fn("chmatch", "data.table", error_on_fail = FALSE)
if (!is.null(chmatch) && is.character(x) && is.character(table)) {
# data.table::chmatch() is much faster than base::match() for character # data.table::chmatch() is much faster than base::match() for character
AMR_env$chmatch(x, table, ...) chmatch(x, table, ...)
} else { } else {
base::match(x, table, ...) base::match(x, table, ...)
} }
} }
`%in%` <- function(x, table) { `%in%` <- function(x, table) {
if (!is.null(AMR_env$chin) && inherits(x, "character") && inherits(table, "character")) { chin <- import_fn("%chin%", "data.table", error_on_fail = FALSE)
if (!is.null(chin) && is.character(x) && is.character(table)) {
# data.table::`%chin%`() is much faster than base::`%in%`() for character # data.table::`%chin%`() is much faster than base::`%in%`() for character
AMR_env$chin(x, table) chin(x, table)
} else { } else {
base::`%in%`(x, table) base::`%in%`(x, table)
} }

View File

@ -176,7 +176,7 @@
#' Data Set with `r format(nrow(microorganisms.groups), big.mark = " ")` Microorganisms In Species Groups #' Data Set with `r format(nrow(microorganisms.groups), big.mark = " ")` Microorganisms In Species Groups
#' #'
#' A data set containing species groups and microbiological complexes, which are used in [the clinical breakpoints table][clinical_breakpoints]. #' A data set containing species groups and microbiological complexes, which are used in [the clinical breakpoints table][clinial_breakpoints].
#' @format A [tibble][tibble::tibble] with `r format(nrow(microorganisms.groups), big.mark = " ")` observations and `r ncol(microorganisms.groups)` variables: #' @format A [tibble][tibble::tibble] with `r format(nrow(microorganisms.groups), big.mark = " ")` observations and `r ncol(microorganisms.groups)` variables:
#' - `mo_group`\cr ID of the species group / microbiological complex #' - `mo_group`\cr ID of the species group / microbiological complex
#' - `mo`\cr ID of the microorganism belonging in the species group / microbiological complex #' - `mo`\cr ID of the microorganism belonging in the species group / microbiological complex

41
R/mo.R
View File

@ -134,10 +134,6 @@
#' "Ureaplasmium urealytica", #' "Ureaplasmium urealytica",
#' "Ureaplazma urealitycium" #' "Ureaplazma urealitycium"
#' )) #' ))
#'
#' # input will get cleaned up with the input given in the `cleaning_regex` argument,
#' # which defaults to `mo_cleaning_regex()`:
#' cat(mo_cleaning_regex(), "\n")
#' #'
#' as.mo("Streptococcus group A") #' as.mo("Streptococcus group A")
#' #'
@ -565,17 +561,14 @@ mo_reset_session <- function() {
#' @rdname as.mo #' @rdname as.mo
#' @export #' @export
mo_cleaning_regex <- function() { mo_cleaning_regex <- function() {
parts_to_remove <- c("e?spp([^a-z]+|$)", "e?ssp([^a-z]+|$)", "e?ss([^a-z]+|$)", "e?sp([^a-z]+|$)", "e?subsp", "sube?species", "e?species",
"biovar[a-z]*", "biotype", "serovar[a-z]*", "var([^a-z]+|$)", "serogr.?up[a-z]*",
"titer", "dummy", "Ig[ADEGM]")
paste0( paste0(
"(", "(",
"[^A-Za-z- \\(\\)\\[\\]{}]+", "[^A-Za-z- \\(\\)\\[\\]{}]+",
"|", "|",
"([({]|\\[).+([})]|\\])", "([({]|\\[).+([})]|\\])",
"|(^| )(", "|",
paste0(parts_to_remove[order(1 - nchar(parts_to_remove))], collapse = "|"), "(^| )(e?spp|e?ssp|e?ss|e?sp|e?subsp|sube?species|biovar|biotype|serovar|var|serogr.?up|e?species|titer|dummy)[.]*|( Ig[ADEGM])( |$))"
"))") )
} }
# UNDOCUMENTED METHODS ---------------------------------------------------- # UNDOCUMENTED METHODS ----------------------------------------------------
@ -628,12 +621,6 @@ pillar_shaft.mo <- function(x, ...) {
) )
} }
# add the names to the bugs as mouse-over!
if (tryCatch(isTRUE(getExportedValue("ansi_has_hyperlink_support", ns = asNamespace("cli"))()), error = function(e) FALSE)) {
out[!x %in% c("UNKNOWN", NA)] <- font_url(url = mo_name(x[!x %in% c("UNKNOWN", NA)], language = NULL, keep_synonyms = TRUE),
txt = out[!x %in% c("UNKNOWN", NA)])
}
# make it always fit exactly # make it always fit exactly
max_char <- max(nchar(x)) max_char <- max(nchar(x))
if (is.na(max_char)) { if (is.na(max_char)) {
@ -845,10 +832,10 @@ print.mo_uncertainties <- function(x, n = 10, ...) {
add_MO_lookup_to_AMR_env() add_MO_lookup_to_AMR_env()
col_red <- function(x) font_rose_bg(x, collapse = NULL) col_red <- function(x) font_rose_bg(font_black(x, collapse = NULL, adapt = FALSE), collapse = NULL)
col_orange <- function(x) font_orange_bg(x, collapse = NULL) col_orange <- function(x) font_orange_bg(font_black(x, collapse = NULL, adapt = FALSE), collapse = NULL)
col_yellow <- function(x) font_yellow_bg(x, collapse = NULL) col_yellow <- function(x) font_yellow_bg(font_black(x, collapse = NULL, adapt = FALSE), collapse = NULL)
col_green <- function(x) font_green_bg(x, collapse = NULL) col_green <- function(x) font_green_bg(font_black(x, collapse = NULL, adapt = FALSE), collapse = NULL)
if (has_colour()) { if (has_colour()) {
cat(word_wrap("Colour keys: ", cat(word_wrap("Colour keys: ",
@ -991,9 +978,9 @@ convert_colloquial_input <- function(x) {
perl = TRUE perl = TRUE
) )
# Streptococci in different languages, like "estreptococos grupo B" # Streptococci in different languages, like "estreptococos grupo B"
out[x %like_case% "strepto[ck]o[ck][a-zA-Z ]* [abcdefghijkl]$"] <- gsub(".*e?strepto[ck]o[ck].* ([abcdefghijkl])$", out[x %like_case% "strepto[ck]o[ck][a-zA-Z]* [abcdefghijkl]$"] <- gsub(".*e?strepto[ck]o[ck].* ([abcdefghijkl])$",
"B_STRPT_GRP\\U\\1", "B_STRPT_GRP\\U\\1",
x[x %like_case% "strepto[ck]o[ck][a-zA-Z ]* [abcdefghijkl]$"], x[x %like_case% "strepto[ck]o[ck][a-zA-Z]* [abcdefghijkl]$"],
perl = TRUE perl = TRUE
) )
out[x %like_case% "strep[a-z]* group [abcdefghijkl]$"] <- gsub(".* ([abcdefghijkl])$", out[x %like_case% "strep[a-z]* group [abcdefghijkl]$"] <- gsub(".* ([abcdefghijkl])$",
@ -1007,7 +994,6 @@ convert_colloquial_input <- function(x) {
perl = TRUE perl = TRUE
) )
out[x %like_case% "ha?emoly.*strep"] <- "B_STRPT_HAEM" out[x %like_case% "ha?emoly.*strep"] <- "B_STRPT_HAEM"
out[x %like_case% "(strepto.* [abcg, ]{2,4}$)"] <- "B_STRPT_ABCG"
out[x %like_case% "(strepto.* mil+er+i|^mgs[^a-z]*$)"] <- "B_STRPT_MILL" out[x %like_case% "(strepto.* mil+er+i|^mgs[^a-z]*$)"] <- "B_STRPT_MILL"
out[x %like_case% "mil+er+i gr"] <- "B_STRPT_MILL" out[x %like_case% "mil+er+i gr"] <- "B_STRPT_MILL"
out[x %like_case% "((strepto|^s).* viridans|^vgs[^a-z]*$)"] <- "B_STRPT_VIRI" out[x %like_case% "((strepto|^s).* viridans|^vgs[^a-z]*$)"] <- "B_STRPT_VIRI"
@ -1038,9 +1024,6 @@ convert_colloquial_input <- function(x) {
out[x %like_case% "anaerob[a-z]+ .*gram[ -]?pos.*"] <- "B_ANAER-POS" out[x %like_case% "anaerob[a-z]+ .*gram[ -]?pos.*"] <- "B_ANAER-POS"
out[is.na(out) & x %like_case% "anaerob[a-z]+ (micro)?.*organism"] <- "B_ANAER" out[is.na(out) & x %like_case% "anaerob[a-z]+ (micro)?.*organism"] <- "B_ANAER"
# coryneform bacteria
out[x %like_case% "^coryneform"] <- "B_CORYNF"
# yeasts and fungi # yeasts and fungi
out[x %like_case% "^yeast?"] <- "F_YEAST" out[x %like_case% "^yeast?"] <- "F_YEAST"
out[x %like_case% "^fung(us|i)"] <- "F_FUNGUS" out[x %like_case% "^fung(us|i)"] <- "F_FUNGUS"
@ -1049,11 +1032,7 @@ convert_colloquial_input <- function(x) {
out[x %like_case% "meningo[ck]o[ck]"] <- "B_NESSR_MNNG" out[x %like_case% "meningo[ck]o[ck]"] <- "B_NESSR_MNNG"
out[x %like_case% "gono[ck]o[ck]"] <- "B_NESSR_GNRR" out[x %like_case% "gono[ck]o[ck]"] <- "B_NESSR_GNRR"
out[x %like_case% "pneumo[ck]o[ck]"] <- "B_STRPT_PNMN" out[x %like_case% "pneumo[ck]o[ck]"] <- "B_STRPT_PNMN"
out[x %like_case% "hacek"] <- "B_HACEK"
out[x %like_case% "haemophilus" & x %like_case% "aggregatibacter" & x %like_case% "cardiobacterium" & x %like_case% "eikenella" & x %like_case% "kingella"] <- "B_HACEK"
out[x %like_case% "slow.* grow.* mycobact"] <- "B_MYCBC_SGM"
out[x %like_case% "rapid.* grow.* mycobact"] <- "B_MYCBC_RGM"
# unexisting names (con is the WHONET code for contamination) # unexisting names (con is the WHONET code for contamination)
out[x %in% c("con", "other", "none", "unknown") | x %like_case% "virus"] <- "UNKNOWN" out[x %in% c("con", "other", "none", "unknown") | x %like_case% "virus"] <- "UNKNOWN"

View File

@ -427,13 +427,22 @@ mo_pathogenicity <- function(x, language = get_AMR_locale(), keep_synonyms = get
kngd <- AMR_env$MO_lookup$kingdom[match(x.mo, AMR_env$MO_lookup$mo)] kngd <- AMR_env$MO_lookup$kingdom[match(x.mo, AMR_env$MO_lookup$mo)]
rank <- AMR_env$MO_lookup$rank[match(x.mo, AMR_env$MO_lookup$mo)] rank <- AMR_env$MO_lookup$rank[match(x.mo, AMR_env$MO_lookup$mo)]
out <- factor(case_when_AMR(prev == 1 & kngd == "Bacteria" & rank != "genus" ~ "Pathogenic", out <- factor(
(prev < 2 & kngd == "Fungi") ~ "Potentially pathogenic", ifelse(prev == 1 & kngd == "Bacteria" & rank != "genus",
prev == 2 & kngd == "Bacteria" ~ "Non-pathogenic", "Pathogenic",
kngd == "Bacteria" ~ "Potentially pathogenic", ifelse(prev < 2 & kngd == "Fungi",
TRUE ~ "Unknown"), "Potentially pathogenic",
levels = c("Pathogenic", "Potentially pathogenic", "Non-pathogenic", "Unknown"), ifelse(prev == 2 & kngd == "Bacteria",
ordered = TRUE "Non-pathogenic",
ifelse(kngd == "Bacteria",
"Potentially pathogenic",
"Unknown"
)
)
)
),
levels = c("Pathogenic", "Potentially pathogenic", "Non-pathogenic", "Unknown"),
ordered = TRUE
) )
load_mo_uncertainties(metadata) load_mo_uncertainties(metadata)
@ -913,36 +922,26 @@ mo_validate <- function(x, property, language, keep_synonyms = keep_synonyms, ..
Lancefield <- FALSE Lancefield <- FALSE
} }
has_Becker_or_Lancefield <- Becker %in% c(TRUE, "all") || Lancefield %in% c(TRUE, "all") has_Becker_or_Lancefield <- Becker %in% c(TRUE, "all") || Lancefield %in% c(TRUE, "all")
if (isFALSE(has_Becker_or_Lancefield) && isTRUE(keep_synonyms) && all(x %in% c(AMR_env$MO_lookup$mo, NA))) { # get microorganisms data set, but remove synonyms if keep_synonyms is FALSE
# fastest way to get properties mo_data_check <- AMR_env$MO_lookup[which(AMR_env$MO_lookup$status %in% if (isTRUE(keep_synonyms)) c("synonym", "accepted") else "accepted"), , drop = FALSE]
if (property == "snomed") {
x <- lapply(x, function(y) unlist(AMR_env$MO_lookup$snomed[match(y, AMR_env$MO_lookup$mo)])) if (all(x %in% c(mo_data_check$mo, NA)) && !has_Becker_or_Lancefield) {
} else { # do nothing, just don't run the other if-else's
x <- AMR_env$MO_lookup[[property]][match(x, AMR_env$MO_lookup$mo)] } else if (all(x %in% c(unlist(mo_data_check[[property]]), NA)) && !has_Becker_or_Lancefield) {
} # no need to do anything, just return it
return(x)
} else { } else {
# get microorganisms data set, but remove synonyms if keep_synonyms is FALSE # we need to get MO codes now
mo_data_check <- AMR_env$MO_lookup[which(AMR_env$MO_lookup$status %in% if (isTRUE(keep_synonyms)) c("synonym", "accepted") else "accepted"), , drop = FALSE] x <- replace_old_mo_codes(x, property = property)
x <- as.mo(x, language = language, keep_synonyms = keep_synonyms, ...)
if (all(x %in% c(mo_data_check$mo, NA)) && !has_Becker_or_Lancefield) { }
# do nothing, just don't run the other if-else's
} else if (all(x %in% c(unlist(mo_data_check[[property]]), NA)) && !has_Becker_or_Lancefield) { # get property reeaaally fast using match()
# no need to do anything, just return it if (property == "snomed") {
return(x) x <- lapply(x, function(y) unlist(AMR_env$MO_lookup$snomed[match(y, AMR_env$MO_lookup$mo)]))
} else { } else {
# we need to get MO codes now x <- AMR_env$MO_lookup[[property]][match(x, AMR_env$MO_lookup$mo)]
x <- replace_old_mo_codes(x, property = property)
x <- as.mo(x, language = language, keep_synonyms = keep_synonyms, ...)
}
# get property reeaaally fast using match()
if (property == "snomed") {
x <- lapply(x, function(y) unlist(AMR_env$MO_lookup$snomed[match(y, AMR_env$MO_lookup$mo)]))
} else {
x <- AMR_env$MO_lookup[[property]][match(x, AMR_env$MO_lookup$mo)]
}
} }
if (property == "mo") { if (property == "mo") {

View File

@ -40,7 +40,6 @@
#' @param colours_SIR colours to use for filling in the bars, must be a vector of three values (in the order S, I and R). The default colours are colour-blind friendly. #' @param colours_SIR colours to use for filling in the bars, must be a vector of three values (in the order S, I and R). The default colours are colour-blind friendly.
#' @param language language to be used to translate 'Susceptible', 'Increased exposure'/'Intermediate' and 'Resistant' - the default is system language (see [get_AMR_locale()]) and can be overwritten by setting the [package option][AMR-options] [`AMR_locale`][AMR-options], e.g. `options(AMR_locale = "de")`, see [translate]. Use `language = NULL` or `language = ""` to prevent translation. #' @param language language to be used to translate 'Susceptible', 'Increased exposure'/'Intermediate' and 'Resistant' - the default is system language (see [get_AMR_locale()]) and can be overwritten by setting the [package option][AMR-options] [`AMR_locale`][AMR-options], e.g. `options(AMR_locale = "de")`, see [translate]. Use `language = NULL` or `language = ""` to prevent translation.
#' @param expand a [logical] to indicate whether the range on the x axis should be expanded between the lowest and highest value. For MIC values, intermediate values will be factors of 2 starting from the highest MIC value. For disk diameters, the whole diameter range will be filled. #' @param expand a [logical] to indicate whether the range on the x axis should be expanded between the lowest and highest value. For MIC values, intermediate values will be factors of 2 starting from the highest MIC value. For disk diameters, the whole diameter range will be filled.
#' @inheritParams as.sir
#' @details #' @details
#' The interpretation of "I" will be named "Increased exposure" for all EUCAST guidelines since 2019, and will be named "Intermediate" in all other cases. #' The interpretation of "I" will be named "Increased exposure" for all EUCAST guidelines since 2019, and will be named "Intermediate" in all other cases.
#' #'
@ -94,8 +93,6 @@ plot.mic <- function(x,
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), language = get_AMR_locale(),
expand = TRUE, expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"),
...) { ...) {
meet_criteria(mo, allow_class = c("mo", "character"), allow_NULL = TRUE) meet_criteria(mo, allow_class = c("mo", "character"), allow_NULL = TRUE)
meet_criteria(ab, allow_class = c("ab", "character"), allow_NULL = TRUE) meet_criteria(ab, allow_class = c("ab", "character"), allow_NULL = TRUE)
@ -126,9 +123,7 @@ plot.mic <- function(x,
colours_SIR = colours_SIR, colours_SIR = colours_SIR,
fn = as.mic, fn = as.mic,
language = language, language = language,
method = "MIC", type = "MIC",
include_PKPD = include_PKPD,
breakpoint_type = breakpoint_type,
... ...
) )
barplot(x, barplot(x,
@ -229,8 +224,6 @@ autoplot.mic <- function(object,
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), language = get_AMR_locale(),
expand = TRUE, expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"),
...) { ...) {
stop_ifnot_installed("ggplot2") stop_ifnot_installed("ggplot2")
meet_criteria(mo, allow_class = c("mo", "character"), allow_NULL = TRUE) meet_criteria(mo, allow_class = c("mo", "character"), allow_NULL = TRUE)
@ -263,9 +256,7 @@ autoplot.mic <- function(object,
colours_SIR = colours_SIR, colours_SIR = colours_SIR,
fn = as.mic, fn = as.mic,
language = language, language = language,
method = "MIC", type = "MIC",
include_PKPD = include_PKPD,
breakpoint_type = breakpoint_type,
... ...
) )
df <- as.data.frame(x, stringsAsFactors = TRUE) df <- as.data.frame(x, stringsAsFactors = TRUE)
@ -336,8 +327,6 @@ plot.disk <- function(x,
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), language = get_AMR_locale(),
expand = TRUE, expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"),
...) { ...) {
meet_criteria(main, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(main, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(ylab, allow_class = "character", has_length = 1) meet_criteria(ylab, allow_class = "character", has_length = 1)
@ -368,9 +357,7 @@ plot.disk <- function(x,
colours_SIR = colours_SIR, colours_SIR = colours_SIR,
fn = as.disk, fn = as.disk,
language = language, language = language,
method = "disk", type = "disk",
include_PKPD = include_PKPD,
breakpoint_type = breakpoint_type,
... ...
) )
@ -471,8 +458,6 @@ autoplot.disk <- function(object,
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), language = get_AMR_locale(),
expand = TRUE, expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"),
...) { ...) {
stop_ifnot_installed("ggplot2") stop_ifnot_installed("ggplot2")
meet_criteria(title, allow_class = "character", allow_NULL = TRUE) meet_criteria(title, allow_class = "character", allow_NULL = TRUE)
@ -505,9 +490,7 @@ autoplot.disk <- function(object,
colours_SIR = colours_SIR, colours_SIR = colours_SIR,
fn = as.disk, fn = as.disk,
language = language, language = language,
method = "disk", type = "disk",
include_PKPD = include_PKPD,
breakpoint_type = breakpoint_type,
... ...
) )
df <- as.data.frame(x, stringsAsFactors = TRUE) df <- as.data.frame(x, stringsAsFactors = TRUE)
@ -761,45 +744,38 @@ plot_name_of_I <- function(guideline) {
} }
} }
plot_colours_subtitle_guideline <- function(x, mo, ab, guideline, colours_SIR, fn, language, method, breakpoint_type, include_PKPD, ...) { plot_colours_subtitle_guideline <- function(x, mo, ab, guideline, colours_SIR, fn, language, type, ...) {
guideline <- get_guideline(guideline, AMR::clinical_breakpoints) guideline <- get_guideline(guideline, AMR::clinical_breakpoints)
# store previous interpretations to backup
sir_history <- AMR_env$sir_interpretation_history
# and clear previous interpretations
AMR_env$sir_interpretation_history <- AMR_env$sir_interpretation_history[0, , drop = FALSE]
if (!is.null(mo) && !is.null(ab)) { if (!is.null(mo) && !is.null(ab)) {
# interpret and give colour based on MIC values # interpret and give colour based on MIC values
mo <- as.mo(mo) mo <- as.mo(mo)
moname <- mo_name(mo, language = language) moname <- mo_name(mo, language = language)
ab <- as.ab(ab) ab <- as.ab(ab)
abname <- ab_name(ab, language = language) abname <- ab_name(ab, language = language)
sir <- suppressWarnings(suppressMessages(as.sir(fn(names(x)), mo = mo, ab = ab, guideline = guideline, include_screening = FALSE, include_PKPD = include_PKPD, breakpoint_type = breakpoint_type, ...))) sir <- suppressWarnings(suppressMessages(as.sir(fn(names(x)), mo = mo, ab = ab, guideline = guideline, include_screening = FALSE, include_PKPD = TRUE, ...)))
guideline_txt <- guideline guideline_txt <- guideline
if (all(is.na(sir))) { if (all(is.na(sir))) {
sir_screening <- suppressWarnings(suppressMessages(as.sir(fn(names(x)), mo = mo, ab = ab, guideline = guideline, include_screening = TRUE, include_PKPD = include_PKPD, breakpoint_type = breakpoint_type, ...))) sir_screening <- suppressWarnings(suppressMessages(as.sir(fn(names(x)), mo = mo, ab = ab, guideline = guideline, include_screening = TRUE, include_PKPD = TRUE, ...)))
if (!all(is.na(sir_screening))) { if (!all(is.na(sir_screening))) {
message_( message_(
"Only ", guideline, " ", method, " interpretations found for ", "Only ", guideline, " ", type, " interpretations found for ",
ab_name(ab, language = NULL, tolower = TRUE), " in ", italicise(moname), " for screening" ab_name(ab, language = NULL, tolower = TRUE), " in ", italicise(moname), " for screening"
) )
sir <- sir_screening sir <- sir_screening
guideline_txt <- paste0("(Screen, ", guideline_txt, ")") guideline_txt <- paste0("(Screen, ", guideline_txt, ")")
} else { } else {
message_( message_(
"No ", guideline, " ", method, " interpretations found for ", "No ", guideline, " ", type, " interpretations found for ",
ab_name(ab, language = NULL, tolower = TRUE), " in ", italicise(moname) ab_name(ab, language = NULL, tolower = TRUE), " in ", italicise(moname)
) )
guideline_txt <- paste0("(", guideline_txt, ")") guideline_txt <- ""
} }
} else { } else {
if (isTRUE(list(...)$uti)) { if (isTRUE(list(...)$uti)) {
guideline_txt <- paste("UTIs,", guideline_txt) guideline_txt <- paste("UTIs,", guideline_txt)
} }
ref_tbl <- paste0('"', unique(AMR_env$sir_interpretation_history$ref_table), '"', collapse = "/") guideline_txt <- paste0("(", guideline_txt, ")")
guideline_txt <- paste0("(", guideline_txt, ": ", ref_tbl, ")")
} }
cols <- character(length = length(sir)) cols <- character(length = length(sir))
cols[is.na(sir)] <- "#BEBEBE" cols[is.na(sir)] <- "#BEBEBE"
@ -811,9 +787,5 @@ plot_colours_subtitle_guideline <- function(x, mo, ab, guideline, colours_SIR, f
cols <- "#BEBEBE" cols <- "#BEBEBE"
sub <- NULL sub <- NULL
} }
# restore previous interpretations to backup
AMR_env$sir_interpretation_history <- sir_history
list(cols = cols, count = as.double(x), sub = sub, guideline = guideline) list(cols = cols, count = as.double(x), sub = sub, guideline = guideline)
} }

133
R/sir.R
View File

@ -105,7 +105,7 @@
#' #'
#' The function [is_sir_eligible()] returns `TRUE` when a columns contains at most 5% invalid antimicrobial interpretations (not S and/or I and/or R), and `FALSE` otherwise. The threshold of 5% can be set with the `threshold` argument. If the input is a [data.frame], it iterates over all columns and returns a [logical] vector. #' The function [is_sir_eligible()] returns `TRUE` when a columns contains at most 5% invalid antimicrobial interpretations (not S and/or I and/or R), and `FALSE` otherwise. The threshold of 5% can be set with the `threshold` argument. If the input is a [data.frame], it iterates over all columns and returns a [logical] vector.
#' @section Interpretation of SIR: #' @section Interpretation of SIR:
#' In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (<https://www.eucast.org/newsiandr>): #' In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (<https://www.eucast.org/newsiandr/>):
#' #'
#' - **S - Susceptible, standard dosing regimen**\cr #' - **S - Susceptible, standard dosing regimen**\cr
#' A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. #' A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.
@ -793,7 +793,7 @@ as_sir_method <- function(method_short,
mo.bak <- mo mo.bak <- mo
} }
# be sure to take current taxonomy, as the 'clinical_breakpoints' data set only contains current taxonomy # be sure to take current taxonomy, as the 'clinical_breakpoints' data set only contains current taxonomy
mo <- suppressWarnings(suppressMessages(as.mo(mo, keep_synonyms = FALSE, info = FALSE))) mo <- suppressWarnings(suppressMessages(as.mo(mo, keep_synonyms = FALSE, inf0 = FALSE)))
guideline_coerced <- get_guideline(guideline, reference_data) guideline_coerced <- get_guideline(guideline, reference_data)
if (is.na(ab)) { if (is.na(ab)) {
message_("Returning NAs for unknown antibiotic: '", font_bold(ab.bak), message_("Returning NAs for unknown antibiotic: '", font_bold(ab.bak),
@ -846,13 +846,12 @@ as_sir_method <- function(method_short,
message_(intro_txt, appendLF = FALSE, as_note = FALSE) message_(intro_txt, appendLF = FALSE, as_note = FALSE)
msg_note <- function(messages) { msg_note <- function(messages) {
messages <- unique(messages)
for (i in seq_len(length(messages))) { for (i in seq_len(length(messages))) {
messages[i] <- word_wrap(extra_indent = 5, messages[i]) messages[i] <- word_wrap(extra_indent = 5, messages[i])
} }
message( message(
font_yellow_bg(paste0(" NOTE", ifelse(length(messages) > 1, "S", ""), " \n")), font_yellow(font_bold(paste0(" Note", ifelse(length(messages) > 1, "s", ""), ":\n"))),
paste0(" ", font_black(AMR_env$bullet_icon), " ", font_black(messages, collapse = NULL), collapse = "\n") paste0(" ", font_black(AMR_env$bullet_icon), " ", font_black(messages, collapse = NULL), collapse = "\n")
) )
} }
@ -874,12 +873,12 @@ as_sir_method <- function(method_short,
# when as.sir.disk is called directly # when as.sir.disk is called directly
df$values <- as.disk(df$values) df$values <- as.disk(df$values)
} }
df_unique <- unique(df[ , c("mo", "uti"), drop = FALSE])
rise_warning <- FALSE rise_warning <- FALSE
rise_note <- FALSE rise_note <- FALSE
method_coerced <- toupper(method) method_coerced <- toupper(method)
ab_coerced <- ab ab_coerced <- ab
mo_coerced <- mo
if (identical(reference_data, AMR::clinical_breakpoints)) { if (identical(reference_data, AMR::clinical_breakpoints)) {
breakpoints <- reference_data %pm>% breakpoints <- reference_data %pm>%
@ -907,16 +906,24 @@ as_sir_method <- function(method_short,
breakpoints <- breakpoints %pm>% breakpoints <- breakpoints %pm>%
subset(mo != "UNKNOWN" & ref_tbl %unlike% "PK.*PD") subset(mo != "UNKNOWN" & ref_tbl %unlike% "PK.*PD")
} }
if (all(uti == FALSE, na.rm = TRUE)) {
# remove UTI breakpoints
breakpoints <- breakpoints %pm>%
subset(is.na(uti) | uti == FALSE)
} else if (all(uti == TRUE, na.rm = TRUE)) {
# remove UTI breakpoints
breakpoints <- breakpoints %pm>%
subset(uti == TRUE)
}
msgs <- character(0) msgs <- character(0)
if (nrow(breakpoints) == 0) { if (nrow(breakpoints) == 0) {
# apparently no breakpoints found # apparently no breakpoints found
message( msg_note(paste0(
paste0(font_rose_bg(" WARNING "), "\n"), "No ", method_coerced, " breakpoints available for ",
font_black(paste0(" ", AMR_env$bullet_icon, " No ", method_coerced, " breakpoints available for ", suppressMessages(suppressWarnings(ab_name(ab_coerced, language = NULL, tolower = TRUE))),
suppressMessages(suppressWarnings(ab_name(ab_coerced, language = NULL, tolower = TRUE))), " (", ab_coerced, ")"
" (", ab_coerced, ")"))) ))
load_mo_uncertainties(metadata_mo) load_mo_uncertainties(metadata_mo)
return(rep(NA_sir_, nrow(df))) return(rep(NA_sir_, nrow(df)))
} }
@ -926,41 +933,32 @@ as_sir_method <- function(method_short,
add_intrinsic_resistance_to_AMR_env() add_intrinsic_resistance_to_AMR_env()
} }
p <- progress_ticker(n = nrow(df_unique), n_min = 10, title = font_blue(intro_txt), only_bar_percent = TRUE) p <- progress_ticker(n = length(unique(df$mo)), n_min = 10, title = font_blue(intro_txt), only_bar_percent = TRUE)
has_progress_bar <- !is.null(import_fn("progress_bar", "progress", error_on_fail = FALSE)) && nrow(df_unique) >= 10
on.exit(close(p)) on.exit(close(p))
# run the rules # run the rules
for (i in seq_len(nrow(df_unique))) { for (mo_currrent in unique(df$mo)) {
p$tick() p$tick()
mo_current <- df_unique[i, "mo", drop = TRUE] rows <- which(df$mo == mo_currrent)
uti_current <- df_unique[i, "uti", drop = TRUE]
if (is.na(uti_current)) {
# preference, so no filter on UTIs
rows <- which(df$mo == mo_current)
} else {
rows <- which(df$mo == mo_current & df$uti == uti_current)
}
values <- df[rows, "values", drop = TRUE] values <- df[rows, "values", drop = TRUE]
uti <- df[rows, "uti", drop = TRUE]
new_sir <- rep(NA_sir_, length(rows)) new_sir <- rep(NA_sir_, length(rows))
# find different mo properties, as fast as possible # find different mo properties
mo_current_genus <- AMR_env$MO_lookup$mo[match(AMR_env$MO_lookup$genus[match(mo_current, AMR_env$MO_lookup$mo)], AMR_env$MO_lookup$genus)] mo_current_genus <- as.mo(mo_genus(mo_currrent, language = NULL))
mo_current_family <- AMR_env$MO_lookup$mo[match(AMR_env$MO_lookup$family[match(mo_current, AMR_env$MO_lookup$mo)], AMR_env$MO_lookup$family)] mo_current_family <- as.mo(mo_family(mo_currrent, language = NULL))
mo_current_order <- AMR_env$MO_lookup$mo[match(AMR_env$MO_lookup$order[match(mo_current, AMR_env$MO_lookup$mo)], AMR_env$MO_lookup$order)] mo_current_order <- as.mo(mo_order(mo_currrent, language = NULL))
mo_current_class <- AMR_env$MO_lookup$mo[match(AMR_env$MO_lookup$class[match(mo_current, AMR_env$MO_lookup$mo)], AMR_env$MO_lookup$class)] mo_current_class <- as.mo(mo_class(mo_currrent, language = NULL))
mo_current_rank <- AMR_env$MO_lookup$rank[match(mo_current, AMR_env$MO_lookup$mo)] if (mo_currrent %in% AMR::microorganisms.groups$mo) {
mo_current_name <- AMR_env$MO_lookup$fullname[match(mo_current, AMR_env$MO_lookup$mo)]
if (mo_current %in% AMR::microorganisms.groups$mo) {
# get the species group # get the species group
mo_current_species_group <- AMR::microorganisms.groups$mo_group[match(mo_current, AMR::microorganisms.groups$mo)] mo_current_species_group <- AMR::microorganisms.groups$mo_group[match(mo_currrent, AMR::microorganisms.groups$mo)]
} else { } else {
mo_current_species_group <- mo_current mo_current_species_group <- mo_currrent
} }
mo_current_other <- structure("UNKNOWN", class = c("mo", "character")) mo_current_other <- as.mo("UNKNOWN")
# formatted for notes # formatted for notes
mo_formatted <- mo_current_name mo_formatted <- suppressMessages(suppressWarnings(mo_fullname(mo_currrent, language = NULL, keep_synonyms = FALSE)))
if (!mo_current_rank %in% c("kingdom", "phylum", "class", "order")) { if (!mo_rank(mo_currrent) %in% c("kingdom", "phylum", "class", "order")) {
mo_formatted <- font_italic(mo_formatted) mo_formatted <- font_italic(mo_formatted)
} }
ab_formatted <- paste0( ab_formatted <- paste0(
@ -978,45 +976,40 @@ as_sir_method <- function(method_short,
mo_current_other mo_current_other
)) ))
if (is.na(unique(uti_current))) { if (any(uti, na.rm = TRUE)) {
breakpoints_current <- breakpoints_current %pm>% breakpoints_current <- breakpoints_current %pm>%
# this will put UTI = FALSE first, then UTI = TRUE, then UTI = NA
pm_arrange(rank_index, uti) # 'uti' is a column in data set 'clinical_breakpoints'
} else if (unique(uti_current) == TRUE) {
breakpoints_current <- breakpoints_current %pm>%
subset(uti == TRUE) %pm>%
# be as specific as possible (i.e. prefer species over genus): # be as specific as possible (i.e. prefer species over genus):
pm_arrange(rank_index) # the below `pm_desc(uti)` will put `TRUE` on top and FALSE on bottom
} else if (unique(uti_current) == FALSE) { pm_arrange(rank_index, pm_desc(uti)) # 'uti' is a column in data set 'clinical_breakpoints'
} else {
breakpoints_current <- breakpoints_current %pm>% breakpoints_current <- breakpoints_current %pm>%
subset(uti == FALSE) %pm>% # sort UTI = FALSE first, then UTI = TRUE
# be as specific as possible (i.e. prefer species over genus): pm_arrange(rank_index, uti)
pm_arrange(rank_index)
} }
# throw notes for different body sites # throw notes for different body sites
site <- breakpoints_current[1L, "site", drop = FALSE] # this is the one we'll take if (nrow(breakpoints_current) == 1 && all(breakpoints_current$uti == TRUE) && any(uti %in% c(FALSE, NA)) && message_not_thrown_before("as.sir", "uti", ab_coerced)) {
if (is.na(site)) {
site <- paste0("an unspecified body site")
} else {
site <- paste0("body site '", site, "'")
}
if (nrow(breakpoints_current) == 1 && all(breakpoints_current$uti == TRUE) && any(uti_current %in% c(FALSE, NA)) && message_not_thrown_before("as.sir", "uti", ab_coerced)) {
# only UTI breakpoints available # only UTI breakpoints available
warning_("in `as.sir()`: interpretation of ", font_bold(ab_formatted), " is only available for (uncomplicated) urinary tract infections (UTI) for some microorganisms, thus assuming `uti = TRUE`. See `?as.sir`.") warning_("in `as.sir()`: interpretation of ", font_bold(ab_formatted), " is only available for (uncomplicated) urinary tract infections (UTI) for some microorganisms, thus assuming `uti = TRUE`. See `?as.sir`.")
rise_warning <- TRUE rise_warning <- TRUE
} else if (nrow(breakpoints_current) > 1 && length(unique(breakpoints_current$site)) > 1 && any(is.na(uti_current)) && all(c(TRUE, FALSE) %in% breakpoints_current$uti, na.rm = TRUE) && message_not_thrown_before("as.sir", "siteUTI", mo_current, ab_coerced)) { } else if (nrow(breakpoints_current) > 1 && length(unique(breakpoints_current$site)) > 1 && any(is.na(uti)) && all(c(TRUE, FALSE) %in% breakpoints_current$uti, na.rm = TRUE) && message_not_thrown_before("as.sir", "siteUTI", mo_currrent, ab_coerced)) {
# both UTI and Non-UTI breakpoints available # both UTI and Non-UTI breakpoints available
msgs <- c(msgs, paste0("Breakpoints for UTI ", font_underline("and"), " non-UTI available for ", ab_formatted, " in ", mo_formatted, " - assuming ", site, ". Use argument `uti` to set which isolates are from urine. See `?as.sir`.")) msgs <- c(msgs, paste0("Breakpoints for UTI ", font_underline("and"), " non-UTI available for ", ab_formatted, " in ", mo_formatted, " - assuming non-UTI. Use argument `uti` to set which isolates are from urine. See `?as.sir`."))
breakpoints_current <- breakpoints_current %pm>% breakpoints_current <- breakpoints_current %pm>%
pm_filter(uti == FALSE) pm_filter(uti == FALSE)
} else if (nrow(breakpoints_current) > 1 && length(unique(breakpoints_current$site)) > 1 && all(breakpoints_current$uti == FALSE, na.rm = TRUE) && message_not_thrown_before("as.sir", "siteOther", mo_current, ab_coerced)) { } else if (nrow(breakpoints_current) > 1 && length(unique(breakpoints_current$site)) > 1 && all(breakpoints_current$uti == FALSE, na.rm = TRUE) && message_not_thrown_before("as.sir", "siteOther", mo_currrent, ab_coerced)) {
# breakpoints for multiple body sites available # breakpoints for multiple body sites available
site <- breakpoints_current[1L, "site", drop = FALSE] # this is the one we'll take
if (is.na(site)) {
site <- paste0("an unspecified body site")
} else {
site <- paste0("body site '", site, "'")
}
msgs <- c(msgs, paste0("Multiple breakpoints available for ", ab_formatted, " in ", mo_formatted, " - assuming ", site, ".")) msgs <- c(msgs, paste0("Multiple breakpoints available for ", ab_formatted, " in ", mo_formatted, " - assuming ", site, "."))
} }
# first check if mo is intrinsic resistant # first check if mo is intrinsic resistant
if (isTRUE(add_intrinsic_resistance) && guideline_coerced %like% "EUCAST" && paste(mo_current, ab_coerced) %in% AMR_env$intrinsic_resistant) { if (isTRUE(add_intrinsic_resistance) && guideline_coerced %like% "EUCAST" && paste(mo_currrent, ab_coerced) %in% AMR_env$intrinsic_resistant) {
msgs <- c(msgs, paste0("Intrinsic resistance applied for ", ab_formatted, " in ", mo_formatted, "")) msgs <- c(msgs, paste0("Intrinsic resistance applied for ", ab_formatted, " in ", mo_formatted, ""))
new_sir <- rep(as.sir("R"), length(rows)) new_sir <- rep(as.sir("R"), length(rows))
} else if (nrow(breakpoints_current) == 0) { } else if (nrow(breakpoints_current) == 0) {
@ -1066,11 +1059,10 @@ as_sir_method <- function(method_short,
index = rows, index = rows,
ab_input = rep(ab.bak, length(rows)), ab_input = rep(ab.bak, length(rows)),
ab_guideline = rep(ab_coerced, length(rows)), ab_guideline = rep(ab_coerced, length(rows)),
mo_input = rep(mo.bak[match(mo_current, df$mo)][1], length(rows)), mo_input = rep(mo.bak[match(mo_currrent, df$mo)][1], length(rows)),
mo_guideline = rep(breakpoints_current[, "mo", drop = TRUE], length(rows)), mo_guideline = rep(breakpoints_current[, "mo", drop = TRUE], length(rows)),
guideline = rep(guideline_coerced, length(rows)), guideline = rep(guideline_coerced, length(rows)),
ref_table = rep(breakpoints_current[, "ref_tbl", drop = TRUE], length(rows)), ref_table = rep(breakpoints_current[, "ref_tbl", drop = TRUE], length(rows)),
uti = rep(breakpoints_current[, "uti", drop = TRUE], length(rows)),
method = rep(method_coerced, length(rows)), method = rep(method_coerced, length(rows)),
input = as.double(values), input = as.double(values),
outcome = as.sir(new_sir), outcome = as.sir(new_sir),
@ -1086,14 +1078,14 @@ as_sir_method <- function(method_short,
close(p) close(p)
# printing messages # printing messages
if (has_progress_bar == TRUE) { if (!is.null(import_fn("progress_bar", "progress", error_on_fail = FALSE))) {
# the progress bar has overwritten the intro text, so: # the progress bar has overwritten the intro text, so:
message_(intro_txt, appendLF = FALSE, as_note = FALSE) message_(intro_txt, appendLF = FALSE, as_note = FALSE)
} }
if (isTRUE(rise_warning)) { if (isTRUE(rise_warning)) {
message(font_rose_bg(" WARNING ")) message(font_yellow(font_bold(" * WARNING *")))
} else if (length(msgs) == 0) { } else if (length(msgs) == 0) {
message(font_green_bg(" OK ")) message(font_green(" OK."))
} else { } else {
msg_note(sort(msgs)) msg_note(sort(msgs))
} }
@ -1109,7 +1101,8 @@ as_sir_method <- function(method_short,
sir_interpretation_history <- function(clean = FALSE) { sir_interpretation_history <- function(clean = FALSE) {
meet_criteria(clean, allow_class = "logical", has_length = 1) meet_criteria(clean, allow_class = "logical", has_length = 1)
out <- AMR_env$sir_interpretation_history out.bak <- AMR_env$sir_interpretation_history
out <- out.bak
if (NROW(out) == 0) { if (NROW(out) == 0) {
message_("No results to return. Run `as.sir()` on MIC values or disk diffusion zones first to see a 'logbook' data set here.") message_("No results to return. Run `as.sir()` on MIC values or disk diffusion zones first to see a 'logbook' data set here.")
return(invisible(NULL)) return(invisible(NULL))
@ -1120,8 +1113,10 @@ sir_interpretation_history <- function(clean = FALSE) {
# keep stored for next use # keep stored for next use
if (isTRUE(clean)) { if (isTRUE(clean)) {
AMR_env$sir_interpretation_history <- AMR_env$sir_interpretation_history[0, , drop = FALSE] AMR_env$sir_interpretation_history <- AMR_env$sir_interpretation_history[0, , drop = FALSE]
} else {
AMR_env$sir_interpretation_history <- out.bak
} }
# sort descending on time # sort descending on time
out <- out[order(out$datetime, decreasing = TRUE), , drop = FALSE] out <- out[order(out$datetime, decreasing = TRUE), , drop = FALSE]
@ -1141,11 +1136,7 @@ pillar_shaft.sir <- function(x, ...) {
out[is.na(x)] <- font_grey(" NA") out[is.na(x)] <- font_grey(" NA")
out[x == "S"] <- font_green_bg(" S ") out[x == "S"] <- font_green_bg(" S ")
out[x == "I"] <- font_orange_bg(" I ") out[x == "I"] <- font_orange_bg(" I ")
if (is_dark()) { out[x == "R"] <- font_red_bg(" R ")
out[x == "R"] <- font_red_bg(" R ")
} else {
out[x == "R"] <- font_rose_bg(" R ")
}
} }
create_pillar_column(out, align = "left", width = 5) create_pillar_column(out, align = "left", width = 5)
} }

View File

@ -73,8 +73,6 @@ AMR_env$sir_interpretation_history <- data.frame(
AMR_env$custom_ab_codes <- character(0) AMR_env$custom_ab_codes <- character(0)
AMR_env$custom_mo_codes <- character(0) AMR_env$custom_mo_codes <- character(0)
AMR_env$is_dark_theme <- NULL AMR_env$is_dark_theme <- NULL
AMR_env$chmatch <- import_fn("chmatch", "data.table", error_on_fail = FALSE)
AMR_env$chin <- import_fn("%chin%", "data.table", error_on_fail = FALSE)
# determine info icon for messages # determine info icon for messages
if (pkg_is_available("cli")) { if (pkg_is_available("cli")) {

View File

@ -1 +1 @@
7aeceefb444830af010fcc16f5ba4705 87c6c20d117acd06c37bab6d93966a0b

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -133,11 +133,8 @@ organisms <- organisms %>%
select(-group) %>% select(-group) %>%
distinct() distinct()
# 2023-07-08 SGM is also Strep gamma in WHONET, must only be Slowly-growing Mycobacterium # 2023-07-08 SGM must be Slowly-growing Mycobacterium, not Strep Gamma, not sure why this went wrong
organisms <- organisms %>%
filter(!(code == "SGM" & name %like% "Streptococcus"))
# this must be empty:
organisms$code[organisms$code %>% duplicated()]
saveRDS(organisms, "data-raw/organisms.rds", version = 2) saveRDS(organisms, "data-raw/organisms.rds", version = 2)
@ -226,7 +223,7 @@ breakpoints %>%
filter(!WHONET_ABX_CODE %in% whonet_antibiotics$WHONET_ABX_CODE) %>% filter(!WHONET_ABX_CODE %in% whonet_antibiotics$WHONET_ABX_CODE) %>%
pull(WHONET_ABX_CODE) %>% pull(WHONET_ABX_CODE) %>%
unique() unique()
# they are at the moment all old codes that have the right replacements in `antibiotics`, so we can use as.ab() # they are at the moment all old codes that have right replacements in `antibiotics`, so we can use as.ab()
## Build new breakpoints table ---- ## Build new breakpoints table ----
@ -263,7 +260,7 @@ breakpoints_new <- breakpoints %>%
gsub("", "-", ., fixed = TRUE)) %>% gsub("", "-", ., fixed = TRUE)) %>%
arrange(desc(guideline), mo, ab, type, method) %>% arrange(desc(guideline), mo, ab, type, method) %>%
filter(!(is.na(breakpoint_S) & is.na(breakpoint_R)) & !is.na(mo) & !is.na(ab)) %>% filter(!(is.na(breakpoint_S) & is.na(breakpoint_R)) & !is.na(mo) & !is.na(ab)) %>%
distinct(guideline, type, ab, mo, method, site, breakpoint_S, .keep_all = TRUE) distinct(guideline, ab, mo, method, site, breakpoint_S, .keep_all = TRUE)
# check the strange duplicates # check the strange duplicates
breakpoints_new %>% breakpoints_new %>%
@ -271,7 +268,7 @@ breakpoints_new %>%
filter(id %in% .$id[which(duplicated(id))]) filter(id %in% .$id[which(duplicated(id))])
# remove duplicates # remove duplicates
breakpoints_new <- breakpoints_new %>% breakpoints_new <- breakpoints_new %>%
distinct(guideline, type, ab, mo, method, site, .keep_all = TRUE) distinct(guideline, ab, mo, method, site, .keep_all = TRUE)
# fix reference table names # fix reference table names
breakpoints_new %>% filter(guideline %like% "EUCAST", is.na(ref_tbl)) %>% View() breakpoints_new %>% filter(guideline %like% "EUCAST", is.na(ref_tbl)) %>% View()
@ -292,10 +289,10 @@ breakpoints_new[which(breakpoints_new$method == "MIC" &
breakpoints_new[which(breakpoints_new$method == "MIC" & breakpoints_new[which(breakpoints_new$method == "MIC" &
is.na(breakpoints_new$breakpoint_R)), "breakpoint_R"] <- max(m) is.na(breakpoints_new$breakpoint_R)), "breakpoint_R"] <- max(m)
# raise these one higher valid MIC factor level: # raise these one higher valid MIC factor level:
breakpoints_new[which(breakpoints_new$breakpoint_R == 129), "breakpoint_R"] <- 128 breakpoints_new[which(breakpoints_new$breakpoint_R == 129), "breakpoint_R"] <- m[which(m == 128) + 1]
breakpoints_new[which(breakpoints_new$breakpoint_R == 257), "breakpoint_R"] <- 256 breakpoints_new[which(breakpoints_new$breakpoint_R == 257), "breakpoint_R"] <- m[which(m == 256) + 1]
breakpoints_new[which(breakpoints_new$breakpoint_R == 513), "breakpoint_R"] <- 513 breakpoints_new[which(breakpoints_new$breakpoint_R == 513), "breakpoint_R"] <- m[which(m == 512) + 1]
breakpoints_new[which(breakpoints_new$breakpoint_R == 1025), "breakpoint_R"] <- 1024 breakpoints_new[which(breakpoints_new$breakpoint_R == 1025), "breakpoint_R"] <- m[which(m == 1024) + 1]
# WHONET adds one log2 level to the R breakpoint for their software, e.g. in AMC in Enterobacterales: # WHONET adds one log2 level to the R breakpoint for their software, e.g. in AMC in Enterobacterales:
# EUCAST 2022 guideline: S <= 8 and R > 8 # EUCAST 2022 guideline: S <= 8 and R > 8
@ -322,9 +319,6 @@ breakpoints_new %>% filter(guideline == "EUCAST 2023", ab == "AMC", mo == "B_[OR
# compare with current version # compare with current version
clinical_breakpoints %>% filter(guideline == "EUCAST 2022", ab == "AMC", mo == "B_[ORD]_ENTRBCTR", method == "MIC") clinical_breakpoints %>% filter(guideline == "EUCAST 2022", ab == "AMC", mo == "B_[ORD]_ENTRBCTR", method == "MIC")
# must have "human" and "ECOFF"
breakpoints_new %>% filter(mo == "B_STRPT_PNMN", ab == "AMP", guideline == "EUCAST 2020", method == "MIC")
# check dimensions # check dimensions
dim(breakpoints_new) dim(breakpoints_new)
dim(clinical_breakpoints) dim(clinical_breakpoints)

Binary file not shown.

View File

@ -106,7 +106,7 @@ expect_identical(mo_oxygen_tolerance(c("Klebsiella pneumoniae", "Clostridioides
c("aerobe", "anaerobe")) c("aerobe", "anaerobe"))
expect_equal(as.character(table(mo_pathogenicity(example_isolates$mo))), expect_equal(as.character(table(mo_pathogenicity(example_isolates$mo))),
c("1874", "109", "1", "16")) c("1561", "422", "1", "16"))
expect_equal(mo_ref("Escherichia coli"), "Castellani et al., 1919") expect_equal(mo_ref("Escherichia coli"), "Castellani et al., 1919")
expect_equal(mo_authors("Escherichia coli"), "Castellani et al.") expect_equal(mo_authors("Escherichia coli"), "Castellani et al.")
@ -129,12 +129,9 @@ for (l in AMR:::LANGUAGES_SUPPORTED[-1]) {
# test languages # test languages
expect_error(mo_gramstain("Escherichia coli", language = "UNKNOWN")) expect_error(mo_gramstain("Escherichia coli", language = "UNKNOWN"))
fullnames <- microorganisms$fullname[which(microorganisms$fullname %unlike% "unknown|coagulase|Fungi|[(]class[)]|[{]")] dutch <- suppressWarnings(mo_name(microorganisms$fullname[which(microorganisms$fullname %unlike% "unknown|coagulase|Fungi|[(]class[)]|[{]")], language = "nl", keep_synonyms = TRUE)) # should be transformable to English again
to_dutch <- suppressWarnings(mo_name(fullnames, language = "nl", keep_synonyms = TRUE)) expect_identical(suppressWarnings(mo_name(dutch, language = NULL, keep_synonyms = TRUE)),
back_to_english <- suppressWarnings(mo_name(dutch, language = NULL, keep_synonyms = TRUE)) microorganisms$fullname[which(microorganisms$fullname %unlike% "unknown|coagulase|Fungi|[(]class[)]|[{]")]) # gigantic test - will run ALL names
diffs <- paste0('"', fullnames[fullnames != back_to_english], '"', collapse = ", ")
expect_identical(fullnames, back_to_english, info = diffs) # gigantic test - will run ALL names
# manual property function # manual property function
expect_error(mo_property("Escherichia coli", property = c("genus", "fullname"))) expect_error(mo_property("Escherichia coli", property = c("genus", "fullname")))

View File

@ -133,7 +133,7 @@ The \code{\link[=ab_selector]{ab_selector()}} function can be used to internally
The \code{\link[=administrable_per_os]{administrable_per_os()}} and \code{\link[=administrable_iv]{administrable_iv()}} functions also rely on the \link{antibiotics} data set - antibiotic columns will be matched where a DDD (defined daily dose) for resp. oral and IV treatment is available in the \link{antibiotics} data set. The \code{\link[=administrable_per_os]{administrable_per_os()}} and \code{\link[=administrable_iv]{administrable_iv()}} functions also rely on the \link{antibiotics} data set - antibiotic columns will be matched where a DDD (defined daily dose) for resp. oral and IV treatment is available in the \link{antibiotics} data set.
The \code{\link[=not_intrinsic_resistant]{not_intrinsic_resistant()}} function can be used to only select antibiotic columns that pose no intrinsic resistance for the microorganisms in the data set. For example, if a data set contains only microorganism codes or names of \emph{E. coli} and \emph{K. pneumoniae} and contains a column "vancomycin", this column will be removed (or rather, unselected) using this function. It currently applies \href{https://www.eucast.org/expert_rules_and_expected_phenotypes}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021) to determine intrinsic resistance, using the \code{\link[=eucast_rules]{eucast_rules()}} function internally. Because of this determination, this function is quite slow in terms of performance. The \code{\link[=not_intrinsic_resistant]{not_intrinsic_resistant()}} function can be used to only select antibiotic columns that pose no intrinsic resistance for the microorganisms in the data set. For example, if a data set contains only microorganism codes or names of \emph{E. coli} and \emph{K. pneumoniae} and contains a column "vancomycin", this column will be removed (or rather, unselected) using this function. It currently applies \href{https://www.eucast.org/expert_rules_and_expected_phenotypes/}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021) to determine intrinsic resistance, using the \code{\link[=eucast_rules]{eucast_rules()}} function internally. Because of this determination, this function is quite slow in terms of performance.
} }
\section{Full list of supported (antibiotic) classes}{ \section{Full list of supported (antibiotic) classes}{

View File

@ -201,10 +201,6 @@ as.mo(c(
"Ureaplazma urealitycium" "Ureaplazma urealitycium"
)) ))
# input will get cleaned up with the input given in the `cleaning_regex` argument,
# which defaults to `mo_cleaning_regex()`:
cat(mo_cleaning_regex(), "\n")
as.mo("Streptococcus group A") as.mo("Streptococcus group A")
as.mo("S. epidermidis") # will remain species: B_STPHY_EPDR as.mo("S. epidermidis") # will remain species: B_STPHY_EPDR

View File

@ -94,7 +94,7 @@ sir_interpretation_history(clean = FALSE)
\item{conserve_capped_values}{a \link{logical} to indicate that MIC values starting with \code{">"} (but not \code{">="}) must always return "R" , and that MIC values starting with \code{"<"} (but not \code{"<="}) must always return "S"} \item{conserve_capped_values}{a \link{logical} to indicate that MIC values starting with \code{">"} (but not \code{">="}) must always return "R" , and that MIC values starting with \code{"<"} (but not \code{"<="}) must always return "S"}
\item{add_intrinsic_resistance}{\emph{(only useful when using a EUCAST guideline)} a \link{logical} to indicate whether intrinsic antibiotic resistance must also be considered for applicable bug-drug combinations, meaning that e.g. ampicillin will always return "R" in \emph{Klebsiella} species. Determination is based on the \link{intrinsic_resistant} data set, that itself is based on \href{https://www.eucast.org/expert_rules_and_expected_phenotypes}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021).} \item{add_intrinsic_resistance}{\emph{(only useful when using a EUCAST guideline)} a \link{logical} to indicate whether intrinsic antibiotic resistance must also be considered for applicable bug-drug combinations, meaning that e.g. ampicillin will always return "R" in \emph{Klebsiella} species. Determination is based on the \link{intrinsic_resistant} data set, that itself is based on \href{https://www.eucast.org/expert_rules_and_expected_phenotypes/}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021).}
\item{reference_data}{a \link{data.frame} to be used for interpretation, which defaults to the \link{clinical_breakpoints} data set. Changing this argument allows for using own interpretation guidelines. This argument must contain a data set that is equal in structure to the \link{clinical_breakpoints} data set (same column names and column types). Please note that the \code{guideline} argument will be ignored when \code{reference_data} is manually set.} \item{reference_data}{a \link{data.frame} to be used for interpretation, which defaults to the \link{clinical_breakpoints} data set. Changing this argument allows for using own interpretation guidelines. This argument must contain a data set that is equal in structure to the \link{clinical_breakpoints} data set (same column names and column types). Please note that the \code{guideline} argument will be ignored when \code{reference_data} is manually set.}
@ -171,7 +171,7 @@ After using \code{\link[=as.sir]{as.sir()}}, you can use the \code{\link[=eucast
\subsection{Machine-Readable Clinical Breakpoints}{ \subsection{Machine-Readable Clinical Breakpoints}{
The repository of this package \href{https://github.com/msberends/AMR/blob/main/data-raw/clinical_breakpoints.txt}{contains a machine-readable version} of all guidelines. This is a CSV file consisting of 28 885 rows and 12 columns. This file is machine-readable, since it contains one row for every unique combination of the test method (MIC or disk diffusion), the antimicrobial drug and the microorganism. \strong{This allows for easy implementation of these rules in laboratory information systems (LIS)}. Note that it only contains interpretation guidelines for humans - interpretation guidelines from CLSI for animals were removed. The repository of this package \href{https://github.com/msberends/AMR/blob/main/data-raw/clinical_breakpoints.txt}{contains a machine-readable version} of all guidelines. This is a CSV file consisting of 28 454 rows and 12 columns. This file is machine-readable, since it contains one row for every unique combination of the test method (MIC or disk diffusion), the antimicrobial drug and the microorganism. \strong{This allows for easy implementation of these rules in laboratory information systems (LIS)}. Note that it only contains interpretation guidelines for humans - interpretation guidelines from CLSI for animals were removed.
} }
\subsection{Other}{ \subsection{Other}{
@ -185,7 +185,7 @@ The function \code{\link[=is_sir_eligible]{is_sir_eligible()}} returns \code{TRU
} }
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.

View File

@ -5,7 +5,7 @@
\alias{clinical_breakpoints} \alias{clinical_breakpoints}
\title{Data Set with Clinical Breakpoints for SIR Interpretation} \title{Data Set with Clinical Breakpoints for SIR Interpretation}
\format{ \format{
A \link[tibble:tibble]{tibble} with 28 885 observations and 12 variables: A \link[tibble:tibble]{tibble} with 28 454 observations and 12 variables:
\itemize{ \itemize{
\item \code{guideline}\cr Name of the guideline \item \code{guideline}\cr Name of the guideline
\item \code{type}\cr Breakpoint type, either "ECOFF", "animal", or "human" \item \code{type}\cr Breakpoint type, either "ECOFF", "animal", or "human"

View File

@ -71,7 +71,7 @@ The function \code{\link[=count_df]{count_df()}} takes any variable from \code{d
} }
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.

View File

@ -18,7 +18,7 @@ intrinsic_resistant
Data set containing defined intrinsic resistance by EUCAST of all bug-drug combinations. Data set containing defined intrinsic resistance by EUCAST of all bug-drug combinations.
} }
\details{ \details{
This data set is based on \href{https://www.eucast.org/expert_rules_and_expected_phenotypes}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021). This data set is based on \href{https://www.eucast.org/expert_rules_and_expected_phenotypes/}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021).
\subsection{Direct download}{ \subsection{Direct download}{
Like all data sets in this package, this data set is publicly available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}. Like all data sets in this package, this data set is publicly available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}.

View File

@ -174,7 +174,7 @@ Amikacin (\code{AMK}, \href{https://www.whocc.no/atc_ddd_index/?code=J01GB06&sho
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.

View File

@ -17,7 +17,7 @@ A \link[tibble:tibble]{tibble} with 444 observations and 4 variables:
microorganisms.groups microorganisms.groups
} }
\description{ \description{
A data set containing species groups and microbiological complexes, which are used in \link[=clinical_breakpoints]{the clinical breakpoints table}. A data set containing species groups and microbiological complexes, which are used in \link[=clinial_breakpoints]{the clinical breakpoints table}.
} }
\details{ \details{
Like all data sets in this package, this data set is publicly available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}. Like all data sets in this package, this data set is publicly available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}.

View File

@ -327,7 +327,7 @@ Determination of the Gram stain (\code{\link[=mo_gramstain]{mo_gramstain()}}) wi
Determination of yeasts (\code{\link[=mo_is_yeast]{mo_is_yeast()}}) will be based on the taxonomic kingdom and class. \emph{Budding yeasts} are fungi of the phylum Ascomycota, class Saccharomycetes (also called Hemiascomycetes). \emph{True yeasts} are aggregated into the underlying order Saccharomycetales. Thus, for all microorganisms that are member of the taxonomic class Saccharomycetes, the function will return \code{TRUE}. It returns \code{FALSE} otherwise (or \code{NA} when the input is \code{NA} or the MO code is \code{UNKNOWN}). Determination of yeasts (\code{\link[=mo_is_yeast]{mo_is_yeast()}}) will be based on the taxonomic kingdom and class. \emph{Budding yeasts} are fungi of the phylum Ascomycota, class Saccharomycetes (also called Hemiascomycetes). \emph{True yeasts} are aggregated into the underlying order Saccharomycetales. Thus, for all microorganisms that are member of the taxonomic class Saccharomycetes, the function will return \code{TRUE}. It returns \code{FALSE} otherwise (or \code{NA} when the input is \code{NA} or the MO code is \code{UNKNOWN}).
Determination of intrinsic resistance (\code{\link[=mo_is_intrinsic_resistant]{mo_is_intrinsic_resistant()}}) will be based on the \link{intrinsic_resistant} data set, which is based on \href{https://www.eucast.org/expert_rules_and_expected_phenotypes}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021). The \code{\link[=mo_is_intrinsic_resistant]{mo_is_intrinsic_resistant()}} function can be vectorised over both argument \code{x} (input for microorganisms) and \code{ab} (input for antibiotics). Determination of intrinsic resistance (\code{\link[=mo_is_intrinsic_resistant]{mo_is_intrinsic_resistant()}}) will be based on the \link{intrinsic_resistant} data set, which is based on \href{https://www.eucast.org/expert_rules_and_expected_phenotypes/}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021). The \code{\link[=mo_is_intrinsic_resistant]{mo_is_intrinsic_resistant()}} function can be vectorised over both argument \code{x} (input for microorganisms) and \code{ab} (input for antibiotics).
Determination of bacterial oxygen tolerance (\code{\link[=mo_oxygen_tolerance]{mo_oxygen_tolerance()}}) will be based on BacDive, see \emph{Source}. The function \code{\link[=mo_is_anaerobic]{mo_is_anaerobic()}} only returns \code{TRUE} if the oxygen tolerance is \code{"anaerobe"}, indicting an obligate anaerobic species or genus. It always returns \code{FALSE} for species outside the taxonomic kingdom of Bacteria. Determination of bacterial oxygen tolerance (\code{\link[=mo_oxygen_tolerance]{mo_oxygen_tolerance()}}) will be based on BacDive, see \emph{Source}. The function \code{\link[=mo_is_anaerobic]{mo_is_anaerobic()}} only returns \code{TRUE} if the oxygen tolerance is \code{"anaerobe"}, indicting an obligate anaerobic species or genus. It always returns \code{FALSE} for species outside the taxonomic kingdom of Bacteria.

View File

@ -24,8 +24,6 @@
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), language = get_AMR_locale(),
expand = TRUE, expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"),
... ...
) )
@ -40,8 +38,6 @@
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), language = get_AMR_locale(),
expand = TRUE, expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"),
... ...
) )
@ -58,8 +54,6 @@
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), language = get_AMR_locale(),
expand = TRUE, expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"),
... ...
) )
@ -74,8 +68,6 @@
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), language = get_AMR_locale(),
expand = TRUE, expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"),
... ...
) )
@ -121,10 +113,6 @@
\item{expand}{a \link{logical} to indicate whether the range on the x axis should be expanded between the lowest and highest value. For MIC values, intermediate values will be factors of 2 starting from the highest MIC value. For disk diameters, the whole diameter range will be filled.} \item{expand}{a \link{logical} to indicate whether the range on the x axis should be expanded between the lowest and highest value. For MIC values, intermediate values will be factors of 2 starting from the highest MIC value. For disk diameters, the whole diameter range will be filled.}
\item{include_PKPD}{a \link{logical} to indicate that PK/PD clinical breakpoints must be applied as a last resort - the default is \code{TRUE}. Can also be set with the \link[=AMR-options]{package option} \code{\link[=AMR-options]{AMR_include_PKPD}}.}
\item{breakpoint_type}{the type of breakpoints to use, either "ECOFF", "animal", or "human". ECOFF stands for Epidemiological Cut-Off values. The default is \code{"human"}, which can also be set with the \link[=AMR-options]{package option} \code{\link[=AMR-options]{AMR_breakpoint_type}}.}
\item{...}{arguments passed on to methods} \item{...}{arguments passed on to methods}
} }
\value{ \value{

View File

@ -146,7 +146,7 @@ Using \code{only_all_tested} has no impact when only using one antibiotic as inp
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.

View File

@ -112,7 +112,7 @@ Valid options for the statistical model (argument \code{model}) are:
} }
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.