1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-14 20:01:37 +01:00

Compare commits

..

No commits in common. "a7c9b4c295521083ce0fc718463dd853b18ba884" and "91dd755cac25a799e21aef17c46532ee79a8c1a9" have entirely different histories.

48 changed files with 251 additions and 721 deletions

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 1.5.0.9039 Version: 1.5.0.9031
Date: 2021-03-08 Date: 2021-03-05
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Authors@R: c( Authors@R: c(
person(role = c("aut", "cre"), person(role = c("aut", "cre"),

View File

@ -1,10 +1,8 @@
# Generated by roxygen2: do not edit by hand # Generated by roxygen2: do not edit by hand
S3method("!",mic)
S3method("!=",mic) S3method("!=",mic)
S3method("%%",mic) S3method("%%",mic)
S3method("%/%",mic) S3method("%/%",mic)
S3method("&",mic)
S3method("*",mic) S3method("*",mic)
S3method("+",mic) S3method("+",mic)
S3method("-",mic) S3method("-",mic)
@ -37,10 +35,6 @@ S3method("[[<-",mic)
S3method("[[<-",mo) S3method("[[<-",mo)
S3method("[[<-",rsi) S3method("[[<-",rsi)
S3method("^",mic) S3method("^",mic)
S3method("|",mic)
S3method(abs,mic)
S3method(acos,mic)
S3method(acosh,mic)
S3method(all,mic) S3method(all,mic)
S3method(all.equal,isolate_identifier) S3method(all.equal,isolate_identifier)
S3method(any,mic) S3method(any,mic)
@ -48,16 +42,11 @@ S3method(as.data.frame,ab)
S3method(as.data.frame,mo) S3method(as.data.frame,mo)
S3method(as.double,mic) S3method(as.double,mic)
S3method(as.integer,mic) S3method(as.integer,mic)
S3method(as.matrix,mic)
S3method(as.numeric,mic) S3method(as.numeric,mic)
S3method(as.rsi,data.frame) S3method(as.rsi,data.frame)
S3method(as.rsi,default) S3method(as.rsi,default)
S3method(as.rsi,disk) S3method(as.rsi,disk)
S3method(as.rsi,mic) S3method(as.rsi,mic)
S3method(asin,mic)
S3method(asinh,mic)
S3method(atan,mic)
S3method(atanh,mic)
S3method(barplot,disk) S3method(barplot,disk)
S3method(barplot,mic) S3method(barplot,mic)
S3method(barplot,rsi) S3method(barplot,rsi)
@ -68,30 +57,14 @@ S3method(c,mic)
S3method(c,mo) S3method(c,mo)
S3method(c,rsi) S3method(c,rsi)
S3method(ceiling,mic) S3method(ceiling,mic)
S3method(cos,mic)
S3method(cosh,mic)
S3method(cospi,mic)
S3method(cummax,mic)
S3method(cummin,mic)
S3method(cumprod,mic)
S3method(cumsum,mic)
S3method(digamma,mic)
S3method(droplevels,mic) S3method(droplevels,mic)
S3method(droplevels,rsi) S3method(droplevels,rsi)
S3method(exp,mic)
S3method(expm1,mic)
S3method(floor,mic) S3method(floor,mic)
S3method(format,bug_drug_combinations) S3method(format,bug_drug_combinations)
S3method(gamma,mic)
S3method(hist,mic) S3method(hist,mic)
S3method(kurtosis,data.frame) S3method(kurtosis,data.frame)
S3method(kurtosis,default) S3method(kurtosis,default)
S3method(kurtosis,matrix) S3method(kurtosis,matrix)
S3method(lgamma,mic)
S3method(log,mic)
S3method(log10,mic)
S3method(log1p,mic)
S3method(log2,mic)
S3method(max,mic) S3method(max,mic)
S3method(mean,mic) S3method(mean,mic)
S3method(median,mic) S3method(median,mic)
@ -112,31 +85,18 @@ S3method(print,mo_renamed)
S3method(print,mo_uncertainties) S3method(print,mo_uncertainties)
S3method(print,pca) S3method(print,pca)
S3method(print,rsi) S3method(print,rsi)
S3method(prod,mic)
S3method(quantile,mic) S3method(quantile,mic)
S3method(range,mic) S3method(range,mic)
S3method(rep,mo) S3method(rep,mo)
S3method(round,mic)
S3method(sign,mic)
S3method(signif,mic)
S3method(sin,mic)
S3method(sinh,mic)
S3method(sinpi,mic)
S3method(skewness,data.frame) S3method(skewness,data.frame)
S3method(skewness,default) S3method(skewness,default)
S3method(skewness,matrix) S3method(skewness,matrix)
S3method(sort,mic) S3method(sort,mic)
S3method(sqrt,mic)
S3method(sum,mic) S3method(sum,mic)
S3method(summary,mic) S3method(summary,mic)
S3method(summary,mo) S3method(summary,mo)
S3method(summary,pca) S3method(summary,pca)
S3method(summary,rsi) S3method(summary,rsi)
S3method(tan,mic)
S3method(tanh,mic)
S3method(tanpi,mic)
S3method(trigamma,mic)
S3method(trunc,mic)
S3method(unique,ab) S3method(unique,ab)
S3method(unique,disk) S3method(unique,disk)
S3method(unique,isolate_identifier) S3method(unique,isolate_identifier)
@ -309,7 +269,6 @@ export(theme_rsi)
importFrom(graphics,arrows) importFrom(graphics,arrows)
importFrom(graphics,axis) importFrom(graphics,axis)
importFrom(graphics,barplot) importFrom(graphics,barplot)
importFrom(graphics,hist)
importFrom(graphics,legend) importFrom(graphics,legend)
importFrom(graphics,mtext) importFrom(graphics,mtext)
importFrom(graphics,plot) importFrom(graphics,plot)
@ -318,10 +277,8 @@ importFrom(graphics,text)
importFrom(stats,complete.cases) importFrom(stats,complete.cases)
importFrom(stats,glm) importFrom(stats,glm)
importFrom(stats,lm) importFrom(stats,lm)
importFrom(stats,median)
importFrom(stats,pchisq) importFrom(stats,pchisq)
importFrom(stats,prcomp) importFrom(stats,prcomp)
importFrom(stats,predict) importFrom(stats,predict)
importFrom(stats,qchisq) importFrom(stats,qchisq)
importFrom(stats,quantile)
importFrom(stats,var) importFrom(stats,var)

View File

@ -1,5 +1,5 @@
# AMR 1.5.0.9039 # AMR 1.5.0.9031
## <small>Last updated: 8 March 2021</small> ## <small>Last updated: 5 March 2021</small>
### New ### New
* Support for EUCAST Clinical Breakpoints v11.0 (2021), effective in the `eucast_rules()` function and in `as.rsi()` to interpret MIC and disk diffusion values. This is now the default guideline in this package. * Support for EUCAST Clinical Breakpoints v11.0 (2021), effective in the `eucast_rules()` function and in `as.rsi()` to interpret MIC and disk diffusion values. This is now the default guideline in this package.
@ -73,7 +73,6 @@
* Support for GISA (glycopeptide-intermediate *S. aureus*), so e.g. `mo_genus("GISA")` will return `"Staphylococcus"` * Support for GISA (glycopeptide-intermediate *S. aureus*), so e.g. `mo_genus("GISA")` will return `"Staphylococcus"`
* Added translations of German and Spanish for more than 200 antimicrobial drugs * Added translations of German and Spanish for more than 200 antimicrobial drugs
* Speed improvement for `as.ab()` when the input is an official name or ATC code * Speed improvement for `as.ab()` when the input is an official name or ATC code
* Added argument `include_untested_rsi` to the `first_isolate()` functions (defaults to `TRUE` to keep existing behaviour), to be able to exclude rows where all R/SI values (class `<rsi>`, see `as.rsi()`) are empty
### Other ### Other
* Big documentation updates * Big documentation updates

View File

@ -961,8 +961,15 @@ formatted_filesize <- function(...) {
} }
create_pillar_column <- function(x, ...) { create_pillar_column <- function(x, ...) {
new_pillar_shaft_simple <- import_fn("new_pillar_shaft_simple", "pillar") new_pillar_shaft_simple <- import_fn("new_pillar_shaft_simple", "pillar", error_on_fail = FALSE)
new_pillar_shaft_simple(x, ...) if (!is.null(new_pillar_shaft_simple)) {
new_pillar_shaft_simple(x, ...)
} else {
# does not exist in package 'pillar' anymore
structure(list(x),
class = "pillar_shaft_simple",
...)
}
} }
# copied from vctrs::s3_register by their permission: # copied from vctrs::s3_register by their permission:

1
R/ab.R
View File

@ -105,6 +105,7 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = TRUE, ...) {
already_regex <- isTRUE(list(...)$already_regex) already_regex <- isTRUE(list(...)$already_regex)
fast_mode <- isTRUE(list(...)$fast_mode) fast_mode <- isTRUE(list(...)$fast_mode)
x_bak <- x x_bak <- x
x <- toupper(x) x <- toupper(x)
x_nonNA <- x[!is.na(x)] x_nonNA <- x[!is.na(x)]

View File

@ -26,7 +26,7 @@
#' Retrieve Antimicrobial Drug Names and Doses from Clinical Text #' Retrieve Antimicrobial Drug Names and Doses from Clinical Text
#' #'
#' Use this function on e.g. clinical texts from health care records. It returns a [list] with all antimicrobial drugs, doses and forms of administration found in the texts. #' Use this function on e.g. clinical texts from health care records. It returns a [list] with all antimicrobial drugs, doses and forms of administration found in the texts.
#' @inheritSection lifecycle Stable Lifecycle #' @inheritSection lifecycle Maturing Lifecycle
#' @param text text to analyse #' @param text text to analyse
#' @param type type of property to search for, either `"drug"`, `"dose"` or `"administration"`, see *Examples* #' @param type type of property to search for, either `"drug"`, `"dose"` or `"administration"`, see *Examples*
#' @param collapse character to pass on to `paste(, collapse = ...)` to only return one character per element of `text`, see *Examples* #' @param collapse character to pass on to `paste(, collapse = ...)` to only return one character per element of `text`, see *Examples*

View File

@ -37,14 +37,13 @@
#' @param col_keyantibiotics column name of the key antibiotics to determine first (weighted) isolates, see [key_antibiotics()]. Defaults to the first column that starts with 'key' followed by 'ab' or 'antibiotics' (case insensitive). Use `col_keyantibiotics = FALSE` to prevent this. #' @param col_keyantibiotics column name of the key antibiotics to determine first (weighted) isolates, see [key_antibiotics()]. Defaults to the first column that starts with 'key' followed by 'ab' or 'antibiotics' (case insensitive). Use `col_keyantibiotics = FALSE` to prevent this.
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again. The default of 365 days is based on the guideline by CLSI, see *Source*. #' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again. The default of 365 days is based on the guideline by CLSI, see *Source*.
#' @param testcodes_exclude character vector with test codes that should be excluded (case-insensitive) #' @param testcodes_exclude character vector with test codes that should be excluded (case-insensitive)
#' @param icu_exclude logical to indicate whether ICU isolates should be excluded (rows with value `TRUE` in the column set with `col_icu`) #' @param icu_exclude logical whether ICU isolates should be excluded (rows with value `TRUE` in the column set with `col_icu`)
#' @param specimen_group value in the column set with `col_specimen` to filter on #' @param specimen_group value in the column set with `col_specimen` to filter on
#' @param type type to determine weighed isolates; can be `"keyantibiotics"` or `"points"`, see *Details* #' @param type type to determine weighed isolates; can be `"keyantibiotics"` or `"points"`, see *Details*
#' @param ignore_I logical to indicate whether antibiotic interpretations with `"I"` will be ignored when `type = "keyantibiotics"`, see *Details* #' @param ignore_I logical to determine whether antibiotic interpretations with `"I"` will be ignored when `type = "keyantibiotics"`, see *Details*
#' @param points_threshold points until the comparison of key antibiotics will lead to inclusion of an isolate when `type = "points"`, see *Details* #' @param points_threshold points until the comparison of key antibiotics will lead to inclusion of an isolate when `type = "points"`, see *Details*
#' @param info print progress #' @param info print progress
#' @param include_unknown logical to indicate whether 'unknown' microorganisms should be included too, i.e. microbial code `"UNKNOWN"`, which defaults to `FALSE`. For WHONET users, this means that all records with organism code `"con"` (*contamination*) will be excluded at default. Isolates with a microbial ID of `NA` will always be excluded as first isolate. #' @param include_unknown logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code `"UNKNOWN"`, which defaults to `FALSE`. For WHONET users, this means that all records with organism code `"con"` (*contamination*) will be excluded at default. Isolates with a microbial ID of `NA` will always be excluded as first isolate.
#' @param include_untested_rsi logical to indicate whether also rows without antibiotic results are still eligible for becoming a first isolate. Use `include_untested_rsi = FALSE` to always return `FALSE` for such rows. This checks the data set for columns of class `<rsi>` and consequently requires transforming columns with antibiotic results using [as.rsi()] first.
#' @param ... arguments passed on to [first_isolate()] when using [filter_first_isolate()], or arguments passed on to [key_antibiotics()] when using [filter_first_weighted_isolate()] #' @param ... arguments passed on to [first_isolate()] when using [filter_first_isolate()], or arguments passed on to [key_antibiotics()] when using [filter_first_weighted_isolate()]
#' @details #' @details
#' These functions are context-aware. This means that then the `x` argument can be left blank, see *Examples*. #' These functions are context-aware. This means that then the `x` argument can be left blank, see *Examples*.
@ -160,7 +159,6 @@ first_isolate <- function(x = NULL,
points_threshold = 2, points_threshold = 2,
info = interactive(), info = interactive(),
include_unknown = FALSE, include_unknown = FALSE,
include_untested_rsi = TRUE,
...) { ...) {
if (is_null_or_grouped_tbl(x)) { if (is_null_or_grouped_tbl(x)) {
# when `x` is left blank, auto determine it (get_current_data() also contains dplyr::cur_data_all()) # when `x` is left blank, auto determine it (get_current_data() also contains dplyr::cur_data_all())
@ -190,7 +188,6 @@ first_isolate <- function(x = NULL,
meet_criteria(points_threshold, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(points_threshold, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(info, allow_class = "logical", has_length = 1) meet_criteria(info, allow_class = "logical", has_length = 1)
meet_criteria(include_unknown, allow_class = "logical", has_length = 1) meet_criteria(include_unknown, allow_class = "logical", has_length = 1)
meet_criteria(include_untested_rsi, allow_class = "logical", has_length = 1)
# remove data.table, grouping from tibbles, etc. # remove data.table, grouping from tibbles, etc.
x <- as.data.frame(x, stringsAsFactors = FALSE) x <- as.data.frame(x, stringsAsFactors = FALSE)
@ -475,14 +472,6 @@ first_isolate <- function(x = NULL,
} }
x[which(is.na(x$newvar_mo)), "newvar_first_isolate"] <- FALSE x[which(is.na(x$newvar_mo)), "newvar_first_isolate"] <- FALSE
# handle isolates without antibiogram
if (include_untested_rsi == FALSE && any(is.rsi(x))) {
rsi_all_NA <- which(unname(vapply(FUN.VALUE = logical(1),
as.data.frame(t(x[, is.rsi(x), drop = FALSE])),
function(rsi_values) all(is.na(rsi_values)))))
x[rsi_all_NA, "newvar_first_isolate"] <- FALSE
}
# arrange back according to original sorting again # arrange back according to original sorting again
x <- x[order(x$newvar_row_index), ] x <- x[order(x$newvar_row_index), ]
rownames(x) <- NULL rownames(x) <- NULL

View File

@ -26,7 +26,7 @@
#' PCA Biplot with `ggplot2` #' PCA Biplot with `ggplot2`
#' #'
#' Produces a `ggplot2` variant of a so-called [biplot](https://en.wikipedia.org/wiki/Biplot) for PCA (principal component analysis), but is more flexible and more appealing than the base \R [biplot()] function. #' Produces a `ggplot2` variant of a so-called [biplot](https://en.wikipedia.org/wiki/Biplot) for PCA (principal component analysis), but is more flexible and more appealing than the base \R [biplot()] function.
#' @inheritSection lifecycle Stable Lifecycle #' @inheritSection lifecycle Maturing Lifecycle
#' @param x an object returned by [pca()], [prcomp()] or [princomp()] #' @param x an object returned by [pca()], [prcomp()] or [princomp()]
#' @inheritParams stats::biplot.prcomp #' @inheritParams stats::biplot.prcomp
#' @param labels an optional vector of labels for the observations. If set, the labels will be placed below their respective points. When using the [pca()] function as input for `x`, this will be determined automatically based on the attribute `non_numeric_cols`, see [pca()]. #' @param labels an optional vector of labels for the observations. If set, the labels will be placed below their respective points. When using the [pca()] function as input for `x`, this will be determined automatically based on the attribute `non_numeric_cols`, see [pca()].

View File

@ -26,7 +26,7 @@
#' AMR Plots with `ggplot2` #' AMR Plots with `ggplot2`
#' #'
#' Use these functions to create bar plots for AMR data analysis. All functions rely on [ggplot2][ggplot2::ggplot()] functions. #' Use these functions to create bar plots for AMR data analysis. All functions rely on [ggplot2][ggplot2::ggplot()] functions.
#' @inheritSection lifecycle Stable Lifecycle #' @inheritSection lifecycle Maturing Lifecycle
#' @param data a [data.frame] with column(s) of class [`rsi`] (see [as.rsi()]) #' @param data a [data.frame] with column(s) of class [`rsi`] (see [as.rsi()])
#' @param position position adjustment of bars, either `"fill"`, `"stack"` or `"dodge"` #' @param position position adjustment of bars, either `"fill"`, `"stack"` or `"dodge"`
#' @param x variable to show on x axis, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable #' @param x variable to show on x axis, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable

481
R/mic.R
View File

@ -25,51 +25,13 @@
#' Transform Input to Minimum Inhibitory Concentrations (MIC) #' Transform Input to Minimum Inhibitory Concentrations (MIC)
#' #'
#' This ransforms vectors to a new class [`mic`], which treats the input as decimal numbers, while maintaining operators (such as ">=") and only allowing valid MIC values known to the field of (medical) microbiology. #' This transforms a vector to a new class [`mic`], which is an ordered [factor] with valid minimum inhibitory concentrations (MIC) as levels. Invalid MIC values will be translated as `NA` with a warning.
#' @inheritSection lifecycle Stable Lifecycle #' @inheritSection lifecycle Stable Lifecycle
#' @rdname as.mic #' @rdname as.mic
#' @param x character or numeric vector #' @param x vector
#' @param na.rm a logical indicating whether missing values should be removed #' @param na.rm a logical indicating whether missing values should be removed
#' @details To interpret MIC values as RSI values, use [as.rsi()] on MIC values. It supports guidelines from EUCAST and CLSI. #' @details To interpret MIC values as RSI values, use [as.rsi()] on MIC values. It supports guidelines from EUCAST and CLSI.
#' #' @return Ordered [factor] with additional class [`mic`]
#' This class for MIC values is a quite a special data type: formally it is an ordered factor with valid MIC values as factor levels (to make sure only valid MIC values are retained), but for any mathematical operation it acts as decimal numbers:
#'
#' ```
#' x <- random_mic(10)
#' x
#' #> Class <mic>
#' #> [1] 16 1 8 8 64 >=128 0.0625 32 32 16
#'
#' is.factor(x)
#' #> [1] TRUE
#'
#' x[1] * 2
#' #> [1] 32
#'
#' median(x)
#' #> [1] 26
#' ```
#'
#' This makes it possible to maintain operators that often come with MIC values, such ">=" and "<=", even when filtering using numeric values in data analysis, e.g.:
#'
#' ```
#' x[x > 4]
#' #> Class <mic>
#' #> [1] 16 8 8 64 >=128 32 32 16
#'
#' df <- data.frame(x, hospital = "A")
#' subset(df, x > 4) # or with dplyr: df %>% filter(x > 4)
#' #> x hospital
#' #> 1 16 A
#' #> 5 64 A
#' #> 6 >=128 A
#' #> 8 32 A
#' #> 9 32 A
#' #> 10 16 A
#' ```
#'
#' The following [generic functions][groupGeneric()] are implemented for the MIC class: `!`, `!=`, `%%`, `%/%`, `&`, `*`, `+`, `-`, `/`, `<`, `<=`, `==`, `>`, `>=`, `^`, `|`, [abs()], [acos()], [acosh()], [all()], [any()], [asin()], [asinh()], [atan()], [atanh()], [ceiling()], [cos()], [cosh()], [cospi()], [cummax()], [cummin()], [cumprod()], [cumsum()], [digamma()], [exp()], [expm1()], [floor()], [gamma()], [lgamma()], [log()], [log1p()], [log2()], [log10()], [max()], [mean()], [min()], [prod()], [range()], [round()], [sign()], [signif()], [sin()], [sinh()], [sinpi()], [sqrt()], [sum()], [tan()], [tanh()], [tanpi()], [trigamma()] and [trunc()]. Some functions of the `stats` package are also implemented: [median()], [quantile()], [mad()], [IQR()], [fivenum()]. Also, [boxplot.stats()] is supported. Since [sd()] and [var()] are non-generic functions, these could not be extended. Use [mad()] as an alternative, or use e.g. `sd(as.numeric(x))` where `x` is your vector of MIC values.
#' @return Ordered [factor] with additional class [`mic`], that in mathematical operations acts as decimal numbers. Bare in mind that the outcome of any mathematical operation on MICs will return a numeric value.
#' @aliases mic #' @aliases mic
#' @export #' @export
#' @seealso [as.rsi()] #' @seealso [as.rsi()]
@ -118,29 +80,29 @@ as.mic <- function(x, na.rm = FALSE) {
x <- gsub("\u2264", "<=", x, fixed = TRUE) x <- gsub("\u2264", "<=", x, fixed = TRUE)
x <- gsub("\u2265", ">=", x, fixed = TRUE) x <- gsub("\u2265", ">=", x, fixed = TRUE)
# remove space between operator and number ("<= 0.002" -> "<=0.002") # remove space between operator and number ("<= 0.002" -> "<=0.002")
x <- gsub("(<|=|>) +", "\\1", x, perl = TRUE) x <- gsub("(<|=|>) +", "\\1", x)
# transform => to >= and =< to <= # transform => to >= and =< to <=
x <- gsub("=<", "<=", x, fixed = TRUE) x <- gsub("=<", "<=", x, fixed = TRUE)
x <- gsub("=>", ">=", x, fixed = TRUE) x <- gsub("=>", ">=", x, fixed = TRUE)
# dots without a leading zero must start with 0 # dots without a leading zero must start with 0
x <- gsub("([^0-9]|^)[.]", "\\10.", x, perl = TRUE) x <- gsub("([^0-9]|^)[.]", "\\10.", x)
# values like "<=0.2560.512" should be 0.512 # values like "<=0.2560.512" should be 0.512
x <- gsub(".*[.].*[.]", "0.", x, perl = TRUE) x <- gsub(".*[.].*[.]", "0.", x)
# remove ending .0 # remove ending .0
x <- gsub("[.]+0$", "", x, perl = TRUE) x <- gsub("[.]+0$", "", x)
# remove all after last digit # remove all after last digit
x <- gsub("[^0-9]+$", "", x, perl = TRUE) x <- gsub("[^0-9]+$", "", x)
# keep only one zero before dot # keep only one zero before dot
x <- gsub("0+[.]", "0.", x, perl = TRUE) x <- gsub("0+[.]", "0.", x)
# starting 00 is probably 0.0 if there's no dot yet # starting 00 is probably 0.0 if there's no dot yet
x[!x %like% "[.]"] <- gsub("^00", "0.0", x[!x %like% "[.]"]) x[!x %like% "[.]"] <- gsub("^00", "0.0", x[!x %like% "[.]"])
# remove last zeroes # remove last zeroes
x <- gsub("([.].?)0+$", "\\1", x, perl = TRUE) x <- gsub("([.].?)0+$", "\\1", x)
x <- gsub("(.*[.])0+$", "\\10", x, perl = TRUE) x <- gsub("(.*[.])0+$", "\\10", x)
# remove ending .0 again # remove ending .0 again
x[x %like% "[.]"] <- gsub("0+$", "", x[x %like% "[.]"]) x[x %like% "[.]"] <- gsub("0+$", "", x[x %like% "[.]"])
# never end with dot # never end with dot
x <- gsub("[.]$", "", x, perl = TRUE) x <- gsub("[.]$", "", x)
# force to be character # force to be character
x <- as.character(x) x <- as.character(x)
# trim it # trim it
@ -199,21 +161,21 @@ is.mic <- function(x) {
#' @export #' @export
#' @noRd #' @noRd
as.double.mic <- function(x, ...) { as.double.mic <- function(x, ...) {
as.double(gsub("[<=>]+", "", as.character(x), perl = TRUE)) as.double(gsub("[<=>]+", "", as.character(x)))
} }
#' @method as.integer mic #' @method as.integer mic
#' @export #' @export
#' @noRd #' @noRd
as.integer.mic <- function(x, ...) { as.integer.mic <- function(x, ...) {
as.integer(gsub("[<=>]+", "", as.character(x), perl = TRUE)) as.integer(gsub("[<=>]+", "", as.character(x)))
} }
#' @method as.numeric mic #' @method as.numeric mic
#' @export #' @export
#' @noRd #' @noRd
as.numeric.mic <- function(x, ...) { as.numeric.mic <- function(x, ...) {
as.numeric(gsub("[<=>]+", "", as.character(x), perl = TRUE)) as.numeric(gsub("[<=>]+", "", as.character(x)))
} }
#' @method droplevels mic #' @method droplevels mic
@ -235,7 +197,6 @@ pillar_shaft.mic <- function(x, ...) {
out <- pasted out <- pasted
out[is.na(x)] <- font_na(NA) out[is.na(x)] <- font_na(NA)
out <- gsub("(<|=|>)", font_silver("\\1"), out) out <- gsub("(<|=|>)", font_silver("\\1"), out)
out <- gsub("([.]?0+)$", font_white("\\1"), out)
create_pillar_column(out, align = "right", width = max(nchar(pasted))) create_pillar_column(out, align = "right", width = max(nchar(pasted)))
} }
@ -250,24 +211,22 @@ type_sum.mic <- function(x, ...) {
print.mic <- function(x, ...) { print.mic <- function(x, ...) {
cat("Class <mic>\n") cat("Class <mic>\n")
print(as.character(x), quote = FALSE) print(as.character(x), quote = FALSE)
att <- attributes(x)
if ("na.action" %in% names(att)) {
cat(font_silver(paste0("(NA ", class(att$na.action), ": ", paste0(att$na.action, collapse = ", "), ")\n")))
}
} }
#' @method summary mic #' @method summary mic
#' @export #' @export
#' @noRd #' @noRd
summary.mic <- function(object, ...) { summary.mic <- function(object, ...) {
summary(as.double(object), ...) x <- object
} n_total <- length(x)
x <- x[!is.na(x)]
#' @method as.matrix mic n <- length(x)
#' @export value <- c("Class" = "mic",
#' @noRd "<NA>" = n_total - n,
as.matrix.mic <- function(x, ...) { "Min." = as.character(sort(x)[1]),
as.matrix(as.double(x), ...) "Max." = as.character(sort(x)[n]))
class(value) <- c("summaryDefault", "table")
value
} }
#' @method [ mic #' @method [ mic
@ -322,50 +281,81 @@ unique.mic <- function(x, incomparables = FALSE, ...) {
y y
} }
#' @method sort mic #' @method range mic
#' @export #' @export
#' @noRd #' @noRd
sort.mic <- function(x, decreasing = FALSE, ...) { range.mic <- function(..., na.rm = FALSE) {
if (decreasing == TRUE) { rng <- sort(c(...))
ord <- order(-as.double(x)) if (na.rm == TRUE) {
} else { rng <- rng[!is.na(rng)]
ord <- order(as.double(x))
} }
x[ord] out <- c(as.character(rng[1]), as.character(rng[length(rng)]))
as.double(as.mic(out))
} }
#' @method hist mic #' @method min mic
#' @importFrom graphics hist
#' @export #' @export
#' @noRd #' @noRd
hist.mic <- function(x, ...) { min.mic <- function(..., na.rm = FALSE) {
warning_("Use `plot()` or `ggplot()` for optimal plotting of MIC values", call = FALSE) rng <- sort(c(...))
hist(log2(x)) if (na.rm == TRUE) {
rng <- rng[!is.na(rng)]
}
as.double(as.mic(as.character(rng[1])))
} }
# will be exported using s3_register() in R/zzz.R #' @method max mic
get_skimmers.mic <- function(column) { #' @export
skimr::sfl( #' @noRd
skim_type = "mic", max.mic <- function(..., na.rm = FALSE) {
min = ~min(., na.rm = TRUE), rng <- sort(c(...))
max = ~max(., na.rm = TRUE), if (na.rm == TRUE) {
median = ~stats::median(., na.rm = TRUE), rng <- rng[!is.na(rng)]
n_unique = ~pm_n_distinct(., na.rm = TRUE), }
hist_log2 = ~skimr::inline_hist(log2(stats::na.omit(.))) as.double(as.mic(as.character(rng[length(rng)])))
)
} }
# Miscellaneous mathematical functions ------------------------------------ #' @method sum mic
#' @export
#' @noRd
sum.mic <- function(..., na.rm = FALSE) {
rng <- sort(c(...))
if (na.rm == TRUE) {
rng <- rng[!is.na(rng)]
}
sum(as.double(rng))
}
#' @method all mic
#' @export
#' @noRd
all.mic <- function(..., na.rm = FALSE) {
rng <- sort(c(...))
if (na.rm == TRUE) {
rng <- rng[!is.na(rng)]
}
all(as.double(rng))
}
#' @method any mic
#' @export
#' @noRd
any.mic <- function(..., na.rm = FALSE) {
rng <- sort(c(...))
if (na.rm == TRUE) {
rng <- rng[!is.na(rng)]
}
any(as.double(rng))
}
#' @method mean mic #' @method mean mic
#' @export #' @export
#' @noRd #' @noRd
mean.mic <- function(x, trim = 0, na.rm = FALSE, ...) { mean.mic <- function(x, na.rm = FALSE, ...) {
mean(as.double(x), trim = trim, na.rm = na.rm, ...) mean(as.double(x), na.rm = na.rm, ...)
} }
#' @method median mic #' @method median mic
#' @importFrom stats median
#' @export #' @export
#' @noRd #' @noRd
median.mic <- function(x, na.rm = FALSE, ...) { median.mic <- function(x, na.rm = FALSE, ...) {
@ -373,241 +363,26 @@ median.mic <- function(x, na.rm = FALSE, ...) {
} }
#' @method quantile mic #' @method quantile mic
#' @importFrom stats quantile
#' @export #' @export
#' @noRd #' @noRd
quantile.mic <- function(x, probs = seq(0, 1, 0.25), na.rm = FALSE, quantile.mic <- function(x, probs = seq(0, 1, 0.25), na.rm = FALSE,
names = TRUE, type = 7, ...) { names = TRUE, type = 7, ...) {
quantile(as.double(x), probs = probs, na.rm = na.rm, names = names, type = type, ...) quantile(as.double(x), props = props, na.rm = na.rm, names = names, type = type, ...)
} }
# Math (see ?groupGeneric) ----------------------------------------------
#' @method abs mic
#' @export
#' @noRd
abs.mic <- function(x) {
abs(as.double(x))
}
#' @method sign mic
#' @export
#' @noRd
sign.mic <- function(x) {
sign(as.double(x))
}
#' @method sqrt mic
#' @export
#' @noRd
sqrt.mic <- function(x) {
sqrt(as.double(x))
}
#' @method floor mic #' @method floor mic
#' @export #' @export
#' @noRd #' @noRd
floor.mic <- function(x) { floor.mic <- function(x) {
floor(as.double(x)) floor(as.double(x))
} }
#' @method ceiling mic #' @method ceiling mic
#' @export #' @export
#' @noRd #' @noRd
ceiling.mic <- function(x) { ceiling.mic <- function(x) {
ceiling(as.double(x)) ceiling(as.double(x))
} }
#' @method trunc mic
#' @export
#' @noRd
trunc.mic <- function(x, ...) {
trunc(as.double(x), ...)
}
#' @method round mic
#' @export
#' @noRd
round.mic <- function(x, digits = 0) {
round(as.double(x), digits = digits)
}
#' @method signif mic
#' @export
#' @noRd
signif.mic <- function(x, digits = 6) {
signif(as.double(x), digits = digits)
}
#' @method exp mic
#' @export
#' @noRd
exp.mic <- function(x) {
exp(as.double(x))
}
#' @method log mic
#' @export
#' @noRd
log.mic <- function(x, base = exp(1)) {
log(as.double(x), base = base)
}
#' @method log10 mic
#' @export
#' @noRd
log10.mic <- function(x) {
log10(as.double(x))
}
#' @method log2 mic
#' @export
#' @noRd
log2.mic <- function(x) {
log2(as.double(x))
}
#' @method expm1 mic
#' @export
#' @noRd
expm1.mic <- function(x) {
expm1(as.double(x))
}
#' @method log1p mic
#' @export
#' @noRd
log1p.mic <- function(x) {
log1p(as.double(x))
}
#' @method cos mic
#' @export
#' @noRd
cos.mic <- function(x) {
cos(as.double(x))
}
#' @method sin mic
#' @export
#' @noRd
sin.mic <- function(x) {
sin(as.double(x))
}
#' @method tan mic
#' @export
#' @noRd
tan.mic <- function(x) {
tan(as.double(x))
}
#' @method cospi mic
#' @export
#' @noRd
cospi.mic <- function(x) {
cospi(as.double(x))
}
#' @method sinpi mic
#' @export
#' @noRd
sinpi.mic <- function(x) {
sinpi(as.double(x))
}
#' @method tanpi mic
#' @export
#' @noRd
tanpi.mic <- function(x) {
tanpi(as.double(x))
}
#' @method acos mic
#' @export
#' @noRd
acos.mic <- function(x) {
acos(as.double(x))
}
#' @method asin mic
#' @export
#' @noRd
asin.mic <- function(x) {
asin(as.double(x))
}
#' @method atan mic
#' @export
#' @noRd
atan.mic <- function(x) {
atan(as.double(x))
}
#' @method cosh mic
#' @export
#' @noRd
cosh.mic <- function(x) {
cosh(as.double(x))
}
#' @method sinh mic
#' @export
#' @noRd
sinh.mic <- function(x) {
sinh(as.double(x))
}
#' @method tanh mic
#' @export
#' @noRd
tanh.mic <- function(x) {
tanh(as.double(x))
}
#' @method acosh mic
#' @export
#' @noRd
acosh.mic <- function(x) {
acosh(as.double(x))
}
#' @method asinh mic
#' @export
#' @noRd
asinh.mic <- function(x) {
asinh(as.double(x))
}
#' @method atanh mic
#' @export
#' @noRd
atanh.mic <- function(x) {
atanh(as.double(x))
}
#' @method lgamma mic
#' @export
#' @noRd
lgamma.mic <- function(x) {
lgamma(as.double(x))
}
#' @method gamma mic
#' @export
#' @noRd
gamma.mic <- function(x) {
gamma(as.double(x))
}
#' @method digamma mic
#' @export
#' @noRd
digamma.mic <- function(x) {
digamma(as.double(x))
}
#' @method trigamma mic
#' @export
#' @noRd
trigamma.mic <- function(x) {
trigamma(as.double(x))
}
#' @method cumsum mic
#' @export
#' @noRd
cumsum.mic <- function(x) {
cumsum(as.double(x))
}
#' @method cumprod mic
#' @export
#' @noRd
cumprod.mic <- function(x) {
cumprod(as.double(x))
}
#' @method cummax mic
#' @export
#' @noRd
cummax.mic <- function(x) {
cummax(as.double(x))
}
#' @method cummin mic
#' @export
#' @noRd
cummin.mic <- function(x) {
cummin(as.double(x))
}
# Ops (see ?groupGeneric) -----------------------------------------------
#' @method + mic #' @method + mic
#' @export #' @export
@ -658,27 +433,6 @@ cummin.mic <- function(x) {
as.double(e1) %/% as.double(e2) as.double(e1) %/% as.double(e2)
} }
#' @method & mic
#' @export
#' @noRd
`&.mic` <- function(e1, e2) {
as.double(e1) & as.double(e2)
}
#' @method | mic
#' @export
#' @noRd
`|.mic` <- function(e1, e2) {
as.double(e1) | as.double(e2)
}
#' @method ! mic
#' @export
#' @noRd
`!.mic` <- function(x) {
!as.double(x)
}
#' @method == mic #' @method == mic
#' @export #' @export
#' @noRd #' @noRd
@ -721,47 +475,36 @@ cummin.mic <- function(x) {
as.double(e1) > as.double(e2) as.double(e1) > as.double(e2)
} }
# Summary (see ?groupGeneric) ------------------------------------------- #' @method sort mic
#' @export
#' @noRd
sort.mic <- function(x, decreasing = FALSE, ...) {
if (decreasing == TRUE) {
ord <- order(-as.double(x))
} else {
ord <- order(as.double(x))
}
x[ord]
}
#' @method all mic
#' @method hist mic
#' @export #' @export
#' @noRd #' @noRd
all.mic <- function(..., na.rm = FALSE) { hist.mic <- function(x, ...) {
all(as.double(c(...)), na.rm = na.rm) warning_("Use `plot()` or `ggplot()` for plotting MIC values", call = FALSE)
hist(as.double(x), ...)
} }
#' @method any mic
#' @export # will be exported using s3_register() in R/zzz.R
#' @noRd get_skimmers.mic <- function(column) {
any.mic <- function(..., na.rm = FALSE) { skimr::sfl(
any(as.double(c(...)), na.rm = na.rm) skim_type = "mic",
} min = ~as.character(sort(stats::na.omit(.))[1]),
#' @method sum mic max = ~as.character(sort(stats::na.omit(.))[length(stats::na.omit(.))]),
#' @export median = ~as.character(stats::na.omit(.)[as.double(stats::na.omit(.)) == median(as.double(stats::na.omit(.)))])[1],
#' @noRd n_unique = ~pm_n_distinct(., na.rm = TRUE),
sum.mic <- function(..., na.rm = FALSE) { hist_log2 = ~skimr::inline_hist(log2(as.double(stats::na.omit(.))))
sum(as.double(c(...)), na.rm = na.rm) )
}
#' @method prod mic
#' @export
#' @noRd
prod.mic <- function(..., na.rm = FALSE) {
prod(as.double(c(...)), na.rm = na.rm)
}
#' @method min mic
#' @export
#' @noRd
min.mic <- function(..., na.rm = FALSE) {
min(as.double(c(...)), na.rm = na.rm)
}
#' @method max mic
#' @export
#' @noRd
max.mic <- function(..., na.rm = FALSE) {
max(as.double(c(...)), na.rm = na.rm)
}
#' @method range mic
#' @export
#' @noRd
range.mic <- function(..., na.rm = FALSE) {
range(as.double(c(...)), na.rm = na.rm)
} }

View File

@ -26,7 +26,7 @@
#' Principal Component Analysis (for AMR) #' Principal Component Analysis (for AMR)
#' #'
#' Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables. #' Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables.
#' @inheritSection lifecycle Stable Lifecycle #' @inheritSection lifecycle Maturing Lifecycle
#' @param x a [data.frame] containing numeric columns #' @param x a [data.frame] containing numeric columns
#' @param ... columns of `x` to be selected for PCA, can be unquoted since it supports quasiquotation. #' @param ... columns of `x` to be selected for PCA, can be unquoted since it supports quasiquotation.
#' @inheritParams stats::prcomp #' @inheritParams stats::prcomp

View File

@ -108,6 +108,7 @@ plot.mic <- function(x,
fn = as.mic, fn = as.mic,
language = language, language = language,
...) ...)
barplot(x, barplot(x,
col = cols_sub$cols, col = cols_sub$cols,
main = main, main = main,
@ -115,7 +116,7 @@ plot.mic <- function(x,
ylab = ylab, ylab = ylab,
xlab = xlab, xlab = xlab,
axes = FALSE) axes = FALSE)
axis(2, seq(0, max(x))) axis(2, seq(0, max(as.double(x))))
if (!is.null(cols_sub$sub)) { if (!is.null(cols_sub$sub)) {
mtext(side = 3, line = 0.5, adj = 0.5, cex = 0.75, cols_sub$sub) mtext(side = 3, line = 0.5, adj = 0.5, cex = 0.75, cols_sub$sub)
} }
@ -123,15 +124,15 @@ plot.mic <- function(x,
if (any(colours_RSI %in% cols_sub$cols)) { if (any(colours_RSI %in% cols_sub$cols)) {
legend_txt <- character(0) legend_txt <- character(0)
legend_col <- character(0) legend_col <- character(0)
if (any(cols_sub$cols == colours_RSI[2] & cols_sub$count > 0)) { if (colours_RSI[2] %in% cols_sub$cols) {
legend_txt <- "Susceptible" legend_txt <- "Susceptible"
legend_col <- colours_RSI[2] legend_col <- colours_RSI[2]
} }
if (any(cols_sub$cols == colours_RSI[3] & cols_sub$count > 0)) { if (colours_RSI[3] %in% cols_sub$cols) {
legend_txt <- c(legend_txt, plot_name_of_I(cols_sub$guideline)) legend_txt <- c(legend_txt, plot_name_of_I(cols_sub$guideline))
legend_col <- c(legend_col, colours_RSI[3]) legend_col <- c(legend_col, colours_RSI[3])
} }
if (any(cols_sub$cols == colours_RSI[1] & cols_sub$count > 0)) { if (colours_RSI[1] %in% cols_sub$cols) {
legend_txt <- c(legend_txt, "Resistant") legend_txt <- c(legend_txt, "Resistant")
legend_col <- c(legend_col, colours_RSI[1]) legend_col <- c(legend_col, colours_RSI[1])
} }
@ -316,15 +317,15 @@ plot.disk <- function(x,
if (any(colours_RSI %in% cols_sub$cols)) { if (any(colours_RSI %in% cols_sub$cols)) {
legend_txt <- character(0) legend_txt <- character(0)
legend_col <- character(0) legend_col <- character(0)
if (any(cols_sub$cols == colours_RSI[1] & cols_sub$count > 0)) { if (colours_RSI[1] %in% cols_sub$cols) {
legend_txt <- "Resistant" legend_txt <- "Resistant"
legend_col <- colours_RSI[1] legend_col <- colours_RSI[1]
} }
if (any(cols_sub$cols == colours_RSI[3] & cols_sub$count > 0)) { if (colours_RSI[3] %in% cols_sub$cols) {
legend_txt <- c(legend_txt, plot_name_of_I(cols_sub$guideline)) legend_txt <- c(legend_txt, plot_name_of_I(cols_sub$guideline))
legend_col <- c(legend_col, colours_RSI[3]) legend_col <- c(legend_col, colours_RSI[3])
} }
if (any(cols_sub$cols == colours_RSI[2] & cols_sub$count > 0)) { if (colours_RSI[2] %in% cols_sub$cols) {
legend_txt <- c(legend_txt, "Susceptible") legend_txt <- c(legend_txt, "Susceptible")
legend_col <- c(legend_col, colours_RSI[2]) legend_col <- c(legend_col, colours_RSI[2])
} }
@ -458,8 +459,8 @@ plot_prepare_table <- function(x, expand) {
if (is.mic(x)) { if (is.mic(x)) {
if (expand == TRUE) { if (expand == TRUE) {
# expand range for MIC by adding factors of 2 from lowest to highest so all MICs in between also print # expand range for MIC by adding factors of 2 from lowest to highest so all MICs in between also print
extra_range <- max(x) / 2 extra_range <- max(as.double(x)) / 2
while (min(extra_range) / 2 > min(x)) { while (min(extra_range) / 2 > min(as.double(x))) {
extra_range <- c(min(extra_range) / 2, extra_range) extra_range <- c(min(extra_range) / 2, extra_range)
} }
nms <- extra_range nms <- extra_range
@ -524,9 +525,10 @@ plot_colours_subtitle_guideline <- function(x, mo, ab, guideline, colours_RSI, f
cols <- "#BEBEBE" cols <- "#BEBEBE"
sub <- NULL sub <- NULL
} }
list(cols = cols, count = as.double(x), sub = sub, guideline = guideline) list(cols = cols, sub = sub, guideline = guideline)
} }
#' @method plot rsi #' @method plot rsi
#' @export #' @export
#' @importFrom graphics plot text axis #' @importFrom graphics plot text axis

View File

@ -26,7 +26,7 @@
#' Random MIC Values/Disk Zones/RSI Generation #' Random MIC Values/Disk Zones/RSI Generation
#' #'
#' These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial agent, the generated results will reflect reality as much as possible. #' These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial agent, the generated results will reflect reality as much as possible.
#' @inheritSection lifecycle Stable Lifecycle #' @inheritSection lifecycle Maturing Lifecycle
#' @param size desired size of the returned vector #' @param size desired size of the returned vector
#' @param mo any character that can be coerced to a valid microorganism code with [as.mo()] #' @param mo any character that can be coerced to a valid microorganism code with [as.mo()]
#' @param ab any character that can be coerced to a valid antimicrobial agent code with [as.ab()] #' @param ab any character that can be coerced to a valid antimicrobial agent code with [as.ab()]
@ -119,15 +119,7 @@ random_exec <- function(type, size, mo = NULL, ab = NULL) {
valid_mics <- suppressWarnings(as.mic(set_range_max / (2 ^ c(-3:3)))) valid_mics <- suppressWarnings(as.mic(set_range_max / (2 ^ c(-3:3))))
set_range <- valid_mics[!is.na(valid_mics)] set_range <- valid_mics[!is.na(valid_mics)]
} }
out <- as.mic(sample(set_range, size = size, replace = TRUE)) return(as.mic(sample(set_range, size = size, replace = TRUE)))
# 50% chance that lowest will get <= and highest will get >=
if (stats::runif(1) > 0.5) {
out[out == min(out)] <- paste0("<=", out[out == min(out)])
}
if (stats::runif(1) > 0.5) {
out[out == max(out)] <- paste0(">=", out[out == max(out)])
}
return(out)
} else if (type == "DISK") { } else if (type == "DISK") {
set_range <- seq(from = as.integer(min(df$breakpoint_R) / 1.25), set_range <- seq(from = as.integer(min(df$breakpoint_R) / 1.25),
to = as.integer(max(df$breakpoint_S) * 1.25), to = as.integer(max(df$breakpoint_S) * 1.25),

View File

@ -26,7 +26,7 @@
#' Predict antimicrobial resistance #' Predict antimicrobial resistance
#' #'
#' Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns `se_min` and `se_max`. See *Examples* for a real live example. #' Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns `se_min` and `se_max`. See *Examples* for a real live example.
#' @inheritSection lifecycle Stable Lifecycle #' @inheritSection lifecycle Maturing Lifecycle
#' @param col_ab column name of `x` containing antimicrobial interpretations (`"R"`, `"I"` and `"S"`) #' @param col_ab column name of `x` containing antimicrobial interpretations (`"R"`, `"I"` and `"S"`)
#' @param col_date column name of the date, will be used to calculate years if this column doesn't consist of years already, defaults to the first column of with a date class #' @param col_date column name of the date, will be used to calculate years if this column doesn't consist of years already, defaults to the first column of with a date class
#' @param year_min lowest year to use in the prediction model, dafaults to the lowest year in `col_date` #' @param year_min lowest year to use in the prediction model, dafaults to the lowest year in `col_date`

31
R/rsi.R
View File

@ -339,7 +339,7 @@ as.rsi.mic <- function(x,
# for dplyr's across() # for dplyr's across()
cur_column_dplyr <- import_fn("cur_column", "dplyr", error_on_fail = FALSE) cur_column_dplyr <- import_fn("cur_column", "dplyr", error_on_fail = FALSE)
if (!is.null(cur_column_dplyr) && tryCatch(is.data.frame(get_current_data("ab", 0)), error = function(e) FALSE)) { if (!is.null(cur_column_dplyr)) {
# try to get current column, which will only be available when in across() # try to get current column, which will only be available when in across()
ab <- tryCatch(cur_column_dplyr(), ab <- tryCatch(cur_column_dplyr(),
error = function(e) ab) error = function(e) ab)
@ -428,7 +428,7 @@ as.rsi.disk <- function(x,
# for dplyr's across() # for dplyr's across()
cur_column_dplyr <- import_fn("cur_column", "dplyr", error_on_fail = FALSE) cur_column_dplyr <- import_fn("cur_column", "dplyr", error_on_fail = FALSE)
if (!is.null(cur_column_dplyr) && tryCatch(is.data.frame(get_current_data("ab", 0)), error = function(e) FALSE)) { if (!is.null(cur_column_dplyr)) {
# try to get current column, which will only be available when in across() # try to get current column, which will only be available when in across()
ab <- tryCatch(cur_column_dplyr(), ab <- tryCatch(cur_column_dplyr(),
error = function(e) ab) error = function(e) ab)
@ -704,6 +704,7 @@ exec_as.rsi <- function(method,
conserve_capped_values, conserve_capped_values,
add_intrinsic_resistance, add_intrinsic_resistance,
reference_data) { reference_data) {
metadata_mo <- get_mo_failures_uncertainties_renamed() metadata_mo <- get_mo_failures_uncertainties_renamed()
x_bak <- data.frame(x_mo = paste0(x, mo), stringsAsFactors = FALSE) x_bak <- data.frame(x_mo = paste0(x, mo), stringsAsFactors = FALSE)
@ -720,10 +721,10 @@ exec_as.rsi <- function(method,
warned <- FALSE warned <- FALSE
method_param <- toupper(method) method_param <- toupper(method)
genera <- mo_genus(mo, language = NULL) genera <- mo_genus(mo)
mo_genus <- as.mo(genera, language = NULL) mo_genus <- as.mo(genera)
mo_family <- as.mo(mo_family(mo, language = NULL)) mo_family <- as.mo(mo_family(mo))
mo_order <- as.mo(mo_order(mo, language = NULL)) mo_order <- as.mo(mo_order(mo))
if (any(genera == "Staphylococcus", na.rm = TRUE)) { if (any(genera == "Staphylococcus", na.rm = TRUE)) {
mo_becker <- as.mo(mo, Becker = TRUE) mo_becker <- as.mo(mo, Becker = TRUE)
} else { } else {
@ -807,19 +808,23 @@ exec_as.rsi <- function(method,
pm_filter(uti == FALSE) %pm>% # 'uti' is a column in rsi_translation pm_filter(uti == FALSE) %pm>% # 'uti' is a column in rsi_translation
pm_arrange(pm_desc(nchar(mo))) pm_arrange(pm_desc(nchar(mo)))
} }
get_record <- get_record[1L, , drop = FALSE] get_record <- get_record[1L, , drop = FALSE]
if (NROW(get_record) > 0) { if (NROW(get_record) > 0) {
if (is.na(x[i]) | (is.na(get_record$breakpoint_S) & is.na(get_record$breakpoint_R))) { if (is.na(x[i])) {
new_rsi[i] <- NA_character_ new_rsi[i] <- NA_character_
} else if (method == "mic") { } else if (method == "mic") {
new_rsi[i] <- quick_case_when(isTRUE(conserve_capped_values) & x[i] %like% "^<[0-9]" ~ "S", mic_input <- x[i]
isTRUE(conserve_capped_values) & x[i] %like% "^>[0-9]" ~ "R", mic_S <- as.mic(get_record$breakpoint_S)
mic_R <- as.mic(get_record$breakpoint_R)
new_rsi[i] <- quick_case_when(isTRUE(conserve_capped_values) & mic_input %like% "^<[0-9]" ~ "S",
isTRUE(conserve_capped_values) & mic_input %like% "^>[0-9]" ~ "R",
# start interpreting: EUCAST uses <= S and > R, CLSI uses <=S and >= R # start interpreting: EUCAST uses <= S and > R, CLSI uses <=S and >= R
x[i] <= get_record$breakpoint_S ~ "S", isTRUE(which(levels(mic_input) == mic_input) <= which(levels(mic_S) == mic_S)) ~ "S",
guideline_coerced %like% "EUCAST" & x[i] > get_record$breakpoint_R ~ "R", guideline_coerced %like% "EUCAST" &
guideline_coerced %like% "CLSI" & x[i] >= get_record$breakpoint_R ~ "R", isTRUE(which(levels(mic_input) == mic_input) > which(levels(mic_R) == mic_R)) ~ "R",
guideline_coerced %like% "CLSI" &
isTRUE(which(levels(mic_input) == mic_input) >= which(levels(mic_R) == mic_R)) ~ "R",
# return "I" when not match the bottom or top # return "I" when not match the bottom or top
!is.na(get_record$breakpoint_S) & !is.na(get_record$breakpoint_R) ~ "I", !is.na(get_record$breakpoint_S) & !is.na(get_record$breakpoint_R) ~ "I",
# and NA otherwise # and NA otherwise

Binary file not shown.

Binary file not shown.

View File

@ -33,7 +33,7 @@ no .*growth TRUE FALSE FALSE keine? .*wachstum geen .*groei no .*crecimientonon
no|not TRUE FALSE FALSE keine? geen|niet no|sin sem non sem no|not TRUE FALSE FALSE keine? geen|niet no|sin sem non sem
Susceptible TRUE FALSE FALSE Empfindlich Gevoelig Susceptible Susceptible TRUE FALSE FALSE Empfindlich Gevoelig Susceptible
Intermediate TRUE FALSE FALSE Mittlere Intermediair Intermedio Intermediate TRUE FALSE FALSE Mittlere Intermediair Intermedio
Incr. exposure TRUE FALSE FALSE Empfindlich, erh Belastung 'Incr. exposure' 'Incr. exposure' Incr. exposure TRUE FALSE FALSE Empfindlich, erh Belastung Gevoelig, 'incr. exposure' Susceptible, 'incr. exposure'
Resistant TRUE FALSE FALSE Resistent Resistent Resistente Resistant TRUE FALSE FALSE Resistent Resistent Resistente
antibiotic TRUE TRUE FALSE Antibiotikum antibioticum antibiótico antibiotic TRUE TRUE FALSE Antibiotikum antibioticum antibiótico
Antibiotic TRUE TRUE FALSE Antibiotikum Antibioticum Antibiótico Antibiotic TRUE TRUE FALSE Antibiotikum Antibioticum Antibiótico

1 pattern regular_expr case_sensitive affect_mo_name de nl es it fr pt
33 no|not TRUE FALSE FALSE keine? geen|niet no|sin sem non sem
34 Susceptible TRUE FALSE FALSE Empfindlich Gevoelig Susceptible
35 Intermediate TRUE FALSE FALSE Mittlere Intermediair Intermedio
36 Incr. exposure TRUE FALSE FALSE Empfindlich, erh Belastung 'Incr. exposure' Gevoelig, 'incr. exposure' 'Incr. exposure' Susceptible, 'incr. exposure'
37 Resistant TRUE FALSE FALSE Resistent Resistent Resistente
38 antibiotic TRUE TRUE FALSE Antibiotikum antibioticum antibiótico
39 Antibiotic TRUE TRUE FALSE Antibiotikum Antibioticum Antibiótico

View File

@ -81,7 +81,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="https://msberends.github.io/AMR//index.html">AMR (for R)</a> <a class="navbar-link" href="https://msberends.github.io/AMR//index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>

View File

@ -81,7 +81,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a> <a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>

View File

@ -81,7 +81,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>

View File

@ -81,7 +81,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a> <a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>

View File

@ -43,7 +43,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a> <a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>

View File

@ -81,7 +81,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>
@ -236,13 +236,13 @@
<small>Source: <a href='https://github.com/msberends/AMR/blob/master/NEWS.md'><code>NEWS.md</code></a></small> <small>Source: <a href='https://github.com/msberends/AMR/blob/master/NEWS.md'><code>NEWS.md</code></a></small>
</div> </div>
<div id="amr-1509039" class="section level1"> <div id="amr-1509031" class="section level1">
<h1 class="page-header" data-toc-text="1.5.0.9039"> <h1 class="page-header" data-toc-text="1.5.0.9031">
<a href="#amr-1509039" class="anchor"></a>AMR 1.5.0.9039<small> Unreleased </small> <a href="#amr-1509031" class="anchor"></a>AMR 1.5.0.9031<small> Unreleased </small>
</h1> </h1>
<div id="last-updated-8-march-2021" class="section level2"> <div id="last-updated-5-march-2021" class="section level2">
<h2 class="hasAnchor"> <h2 class="hasAnchor">
<a href="#last-updated-8-march-2021" class="anchor"></a><small>Last updated: 8 March 2021</small> <a href="#last-updated-5-march-2021" class="anchor"></a><small>Last updated: 5 March 2021</small>
</h2> </h2>
<div id="new" class="section level3"> <div id="new" class="section level3">
<h3 class="hasAnchor"> <h3 class="hasAnchor">
@ -280,7 +280,7 @@
</li> </li>
<li><p>Support for custom MDRO guidelines, using the new <code><a href="../reference/mdro.html">custom_mdro_guideline()</a></code> function, please see <code><a href="../reference/mdro.html">mdro()</a></code> for additional info</p></li> <li><p>Support for custom MDRO guidelines, using the new <code><a href="../reference/mdro.html">custom_mdro_guideline()</a></code> function, please see <code><a href="../reference/mdro.html">mdro()</a></code> for additional info</p></li>
<li><p>Function <code><a href="../reference/isolate_identifier.html">isolate_identifier()</a></code>, which will paste a microorganism code with all antimicrobial results of a data set into one string for each row. This is useful to compare isolates, e.g. between institutions or regions, when there is no genotyping available.</p></li> <li><p>Function <code><a href="../reference/isolate_identifier.html">isolate_identifier()</a></code>, which will paste a microorganism code with all antimicrobial results of a data set into one string for each row. This is useful to compare isolates, e.g. between institutions or regions, when there is no genotyping available.</p></li>
<li><p><code>ggplot()</code> generics for classes <code>&lt;mic&gt;</code> and <code>&lt;disk&gt;</code></p></li> <li><p><code><a href="https://ggplot2.tidyverse.org/reference/ggplot.html">ggplot()</a></code> generics for classes <code>&lt;mic&gt;</code> and <code>&lt;disk&gt;</code></p></li>
<li> <li>
<p>Function <code><a href="../reference/mo_property.html">mo_is_yeast()</a></code>, which determines whether a microorganism is a member of the taxonomic class Saccharomycetes or the taxonomic order Saccharomycetales:</p> <p>Function <code><a href="../reference/mo_property.html">mo_is_yeast()</a></code>, which determines whether a microorganism is a member of the taxonomic class Saccharomycetes or the taxonomic order Saccharomycetales:</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
@ -321,7 +321,7 @@
<li>Plotting of MIC and disk diffusion values now support interpretation colouring if you supply the microorganism and antimicrobial agent</li> <li>Plotting of MIC and disk diffusion values now support interpretation colouring if you supply the microorganism and antimicrobial agent</li>
<li>All colours were updated to colour-blind friendly versions for values R, S and I for all plot methods (also applies to tibble printing)</li> <li>All colours were updated to colour-blind friendly versions for values R, S and I for all plot methods (also applies to tibble printing)</li>
<li>Interpretation of MIC and disk diffusion values to R/SI will now be translated if the system language is German, Dutch or Spanish (see <code>translate</code>)</li> <li>Interpretation of MIC and disk diffusion values to R/SI will now be translated if the system language is German, Dutch or Spanish (see <code>translate</code>)</li>
<li>Plotting is now possible with base R using <code><a href="../reference/plot.html">plot()</a></code> and with ggplot2 using <code>ggplot()</code> on any vector of MIC and disk diffusion values</li> <li>Plotting is now possible with base R using <code><a href="../reference/plot.html">plot()</a></code> and with ggplot2 using <code><a href="https://ggplot2.tidyverse.org/reference/ggplot.html">ggplot()</a></code> on any vector of MIC and disk diffusion values</li>
</ul> </ul>
</li> </li>
<li> <li>
@ -351,7 +351,6 @@
</li> </li>
<li>Added translations of German and Spanish for more than 200 antimicrobial drugs</li> <li>Added translations of German and Spanish for more than 200 antimicrobial drugs</li>
<li>Speed improvement for <code><a href="../reference/as.ab.html">as.ab()</a></code> when the input is an official name or ATC code</li> <li>Speed improvement for <code><a href="../reference/as.ab.html">as.ab()</a></code> when the input is an official name or ATC code</li>
<li>Added argument <code>include_untested_rsi</code> to the <code><a href="../reference/first_isolate.html">first_isolate()</a></code> functions (defaults to <code>TRUE</code> to keep existing behaviour), to be able to exclude rows where all R/SI values (class <code>&lt;rsi&gt;</code>, see <code><a href="../reference/as.rsi.html">as.rsi()</a></code>) are empty</li>
</ul> </ul>
</div> </div>
<div id="other" class="section level3"> <div id="other" class="section level3">

View File

@ -12,7 +12,7 @@ articles:
datasets: datasets.html datasets: datasets.html
resistance_predict: resistance_predict.html resistance_predict: resistance_predict.html
welcome_to_AMR: welcome_to_AMR.html welcome_to_AMR: welcome_to_AMR.html
last_built: 2021-03-08T01:35Z last_built: 2021-03-05T14:27Z
urls: urls:
reference: https://msberends.github.io/AMR//reference reference: https://msberends.github.io/AMR//reference
article: https://msberends.github.io/AMR//articles article: https://msberends.github.io/AMR//articles

View File

@ -82,7 +82,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9032</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>

View File

@ -82,7 +82,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9032</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9016</span>
</span> </span>
</div> </div>
@ -301,13 +301,12 @@
<p>With using <code>collapse</code>, this function will return a <a href='https://rdrr.io/r/base/character.html'>character</a>:<br /> <p>With using <code>collapse</code>, this function will return a <a href='https://rdrr.io/r/base/character.html'>character</a>:<br />
<code>df %&gt;% mutate(abx = ab_from_text(clinical_text, collapse = "|"))</code></p> <code>df %&gt;% mutate(abx = ab_from_text(clinical_text, collapse = "|"))</code></p>
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable Lifecycle</h2> <h2 class="hasAnchor" id="maturing-lifecycle"><a class="anchor" href="#maturing-lifecycle"></a>Maturing Lifecycle</h2>
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br /> <p><img src='figures/lifecycle_maturing.svg' style=margin-bottom:5px /> <br />
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p> The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing</strong>. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome <a href='https://github.com/msberends/AMR/issues'>to suggest changes at our repository</a> or <a href='AMR.html'>write us an email (see section 'Contact Us')</a>.</p>
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
<h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2> <h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2>

File diff suppressed because one or more lines are too long

View File

@ -82,7 +82,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9019</span>
</span> </span>
</div> </div>
@ -260,7 +260,6 @@
points_threshold <span class='op'>=</span> <span class='fl'>2</span>, points_threshold <span class='op'>=</span> <span class='fl'>2</span>,
info <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/interactive.html'>interactive</a></span><span class='op'>(</span><span class='op'>)</span>, info <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/interactive.html'>interactive</a></span><span class='op'>(</span><span class='op'>)</span>,
include_unknown <span class='op'>=</span> <span class='cn'>FALSE</span>, include_unknown <span class='op'>=</span> <span class='cn'>FALSE</span>,
include_untested_rsi <span class='op'>=</span> <span class='cn'>TRUE</span>,
<span class='va'>...</span> <span class='va'>...</span>
<span class='op'>)</span> <span class='op'>)</span>
@ -326,7 +325,7 @@
</tr> </tr>
<tr> <tr>
<th>icu_exclude</th> <th>icu_exclude</th>
<td><p>logical to indicate whether ICU isolates should be excluded (rows with value <code>TRUE</code> in the column set with <code>col_icu</code>)</p></td> <td><p>logical whether ICU isolates should be excluded (rows with value <code>TRUE</code> in the column set with <code>col_icu</code>)</p></td>
</tr> </tr>
<tr> <tr>
<th>specimen_group</th> <th>specimen_group</th>
@ -338,7 +337,7 @@
</tr> </tr>
<tr> <tr>
<th>ignore_I</th> <th>ignore_I</th>
<td><p>logical to indicate whether antibiotic interpretations with <code>"I"</code> will be ignored when <code>type = "keyantibiotics"</code>, see <em>Details</em></p></td> <td><p>logical to determine whether antibiotic interpretations with <code>"I"</code> will be ignored when <code>type = "keyantibiotics"</code>, see <em>Details</em></p></td>
</tr> </tr>
<tr> <tr>
<th>points_threshold</th> <th>points_threshold</th>
@ -350,11 +349,7 @@
</tr> </tr>
<tr> <tr>
<th>include_unknown</th> <th>include_unknown</th>
<td><p>logical to indicate whether 'unknown' microorganisms should be included too, i.e. microbial code <code>"UNKNOWN"</code>, which defaults to <code>FALSE</code>. For WHONET users, this means that all records with organism code <code>"con"</code> (<em>contamination</em>) will be excluded at default. Isolates with a microbial ID of <code>NA</code> will always be excluded as first isolate.</p></td> <td><p>logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code <code>"UNKNOWN"</code>, which defaults to <code>FALSE</code>. For WHONET users, this means that all records with organism code <code>"con"</code> (<em>contamination</em>) will be excluded at default. Isolates with a microbial ID of <code>NA</code> will always be excluded as first isolate.</p></td>
</tr>
<tr>
<th>include_untested_rsi</th>
<td><p>logical to indicate whether also rows without antibiotic results are still eligible for becoming a first isolate. Use <code>include_untested_rsi = FALSE</code> to always return <code>FALSE</code> for such rows. This checks the data set for columns of class <code>&lt;rsi&gt;</code> and consequently requires transforming columns with antibiotic results using <code><a href='as.rsi.html'>as.rsi()</a></code> first.</p></td>
</tr> </tr>
<tr> <tr>
<th>...</th> <th>...</th>

View File

@ -82,7 +82,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9032</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9013</span>
</span> </span>
</div> </div>
@ -384,13 +384,12 @@
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2> <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
<p>The colours for labels and points can be changed by adding another scale layer for colour, like <code><a href='https://ggplot2.tidyverse.org/reference/scale_viridis.html'>scale_colour_viridis_d()</a></code> or <code><a href='https://ggplot2.tidyverse.org/reference/scale_brewer.html'>scale_colour_brewer()</a></code>.</p> <p>The colours for labels and points can be changed by adding another scale layer for colour, like <code><a href='https://ggplot2.tidyverse.org/reference/scale_viridis.html'>scale_colour_viridis_d()</a></code> or <code><a href='https://ggplot2.tidyverse.org/reference/scale_brewer.html'>scale_colour_brewer()</a></code>.</p>
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable Lifecycle</h2> <h2 class="hasAnchor" id="maturing-lifecycle"><a class="anchor" href="#maturing-lifecycle"></a>Maturing Lifecycle</h2>
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br /> <p><img src='figures/lifecycle_maturing.svg' style=margin-bottom:5px /> <br />
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p> The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing</strong>. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome <a href='https://github.com/msberends/AMR/issues'>to suggest changes at our repository</a> or <a href='AMR.html'>write us an email (see section 'Contact Us')</a>.</p>
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><span class='co'># `example_isolates` is a data set available in the AMR package.</span> <pre class="examples"><span class='co'># `example_isolates` is a data set available in the AMR package.</span>

View File

@ -82,7 +82,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9032</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>
@ -415,13 +415,12 @@
<p><code>labels_rsi_count()</code> print datalabels on the bars with percentage and amount of isolates using <code><a href='https://ggplot2.tidyverse.org/reference/geom_text.html'>ggplot2::geom_text()</a></code>.</p> <p><code>labels_rsi_count()</code> print datalabels on the bars with percentage and amount of isolates using <code><a href='https://ggplot2.tidyverse.org/reference/geom_text.html'>ggplot2::geom_text()</a></code>.</p>
<p><code>ggplot_rsi()</code> is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (<code>%&gt;%</code>). See <em>Examples</em>.</p> <p><code>ggplot_rsi()</code> is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (<code>%&gt;%</code>). See <em>Examples</em>.</p>
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable Lifecycle</h2> <h2 class="hasAnchor" id="maturing-lifecycle"><a class="anchor" href="#maturing-lifecycle"></a>Maturing Lifecycle</h2>
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br /> <p><img src='figures/lifecycle_maturing.svg' style=margin-bottom:5px /> <br />
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p> The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing</strong>. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome <a href='https://github.com/msberends/AMR/issues'>to suggest changes at our repository</a> or <a href='AMR.html'>write us an email (see section 'Contact Us')</a>.</p>
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
<h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2> <h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2>

View File

@ -81,7 +81,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>

View File

@ -82,7 +82,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9019</span>
</span> </span>
</div> </div>
@ -317,7 +317,7 @@
</tr> </tr>
<tr> <tr>
<th>ignore_I</th> <th>ignore_I</th>
<td><p>logical to indicate whether antibiotic interpretations with <code>"I"</code> will be ignored when <code>type = "keyantibiotics"</code>, see <em>Details</em></p></td> <td><p>logical to determine whether antibiotic interpretations with <code>"I"</code> will be ignored when <code>type = "keyantibiotics"</code>, see <em>Details</em></p></td>
</tr> </tr>
<tr> <tr>
<th>points_threshold</th> <th>points_threshold</th>

View File

@ -82,7 +82,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9032</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9016</span>
</span> </span>
</div> </div>
@ -311,13 +311,12 @@
<p>The <code>pca()</code> function takes a <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> as input and performs the actual PCA with the <span style="R">R</span> function <code><a href='https://rdrr.io/r/stats/prcomp.html'>prcomp()</a></code>.</p> <p>The <code>pca()</code> function takes a <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> as input and performs the actual PCA with the <span style="R">R</span> function <code><a href='https://rdrr.io/r/stats/prcomp.html'>prcomp()</a></code>.</p>
<p>The result of the <code>pca()</code> function is a <a href='https://rdrr.io/r/stats/prcomp.html'>prcomp</a> object, with an additional attribute <code>non_numeric_cols</code> which is a vector with the column names of all columns that do not contain numeric values. These are probably the groups and labels, and will be used by <code><a href='ggplot_pca.html'>ggplot_pca()</a></code>.</p> <p>The result of the <code>pca()</code> function is a <a href='https://rdrr.io/r/stats/prcomp.html'>prcomp</a> object, with an additional attribute <code>non_numeric_cols</code> which is a vector with the column names of all columns that do not contain numeric values. These are probably the groups and labels, and will be used by <code><a href='ggplot_pca.html'>ggplot_pca()</a></code>.</p>
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable Lifecycle</h2> <h2 class="hasAnchor" id="maturing-lifecycle"><a class="anchor" href="#maturing-lifecycle"></a>Maturing Lifecycle</h2>
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br /> <p><img src='figures/lifecycle_maturing.svg' style=margin-bottom:5px /> <br />
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p> The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing</strong>. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome <a href='https://github.com/msberends/AMR/issues'>to suggest changes at our repository</a> or <a href='AMR.html'>write us an email (see section 'Contact Us')</a>.</p>
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
<h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2> <h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2>

View File

@ -82,7 +82,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9032</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>
@ -280,13 +280,12 @@
<p>The base R function <code><a href='https://rdrr.io/r/base/sample.html'>sample()</a></code> is used for generating values.</p> <p>The base R function <code><a href='https://rdrr.io/r/base/sample.html'>sample()</a></code> is used for generating values.</p>
<p>Generated values are based on the latest EUCAST guideline implemented in the <a href='rsi_translation.html'>rsi_translation</a> data set. To create specific generated values per bug or drug, set the <code>mo</code> and/or <code>ab</code> argument.</p> <p>Generated values are based on the latest EUCAST guideline implemented in the <a href='rsi_translation.html'>rsi_translation</a> data set. To create specific generated values per bug or drug, set the <code>mo</code> and/or <code>ab</code> argument.</p>
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable Lifecycle</h2> <h2 class="hasAnchor" id="maturing-lifecycle"><a class="anchor" href="#maturing-lifecycle"></a>Maturing Lifecycle</h2>
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br /> <p><img src='figures/lifecycle_maturing.svg' style=margin-bottom:5px /> <br />
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p> The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing</strong>. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome <a href='https://github.com/msberends/AMR/issues'>to suggest changes at our repository</a> or <a href='AMR.html'>write us an email (see section 'Contact Us')</a>.</p>
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
<h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2> <h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2>

View File

@ -82,7 +82,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a> <a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9032</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9019</span>
</span> </span>
</div> </div>
@ -364,13 +364,12 @@
<li><p><code>"lin"</code> or <code>"linear"</code>: a linear regression model</p></li> <li><p><code>"lin"</code> or <code>"linear"</code>: a linear regression model</p></li>
</ul> </ul>
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable Lifecycle</h2> <h2 class="hasAnchor" id="maturing-lifecycle"><a class="anchor" href="#maturing-lifecycle"></a>Maturing Lifecycle</h2>
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br /> <p><img src='figures/lifecycle_maturing.svg' style=margin-bottom:5px /> <br />
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p> The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing</strong>. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome <a href='https://github.com/msberends/AMR/issues'>to suggest changes at our repository</a> or <a href='AMR.html'>write us an email (see section 'Contact Us')</a>.</p>
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
<h2 class="hasAnchor" id="interpretation-of-r-and-s-i"><a class="anchor" href="#interpretation-of-r-and-s-i"></a>Interpretation of R and S/I</h2> <h2 class="hasAnchor" id="interpretation-of-r-and-s-i"><a class="anchor" href="#interpretation-of-r-and-s-i"></a>Interpretation of R and S/I</h2>

View File

@ -81,7 +81,7 @@
</button> </button>
<span class="navbar-brand"> <span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a> <a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9039</span> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9031</span>
</span> </span>
</div> </div>

View File

@ -54,12 +54,10 @@ With using \code{collapse}, this function will return a \link{character}:\cr
\code{df \%>\% mutate(abx = ab_from_text(clinical_text, collapse = "|"))} \code{df \%>\% mutate(abx = ab_from_text(clinical_text, collapse = "|"))}
} }
} }
\section{Stable Lifecycle}{ \section{Maturing Lifecycle}{
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr} \if{html}{\figure{lifecycle_maturing.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided. The \link[=lifecycle]{lifecycle} of this function is \strong{maturing}. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome \href{https://github.com/msberends/AMR/issues}{to suggest changes at our repository} or \link[=AMR]{write us an email (see section 'Contact Us')}.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
} }
\section{Read more on Our Website!}{ \section{Read more on Our Website!}{

View File

@ -11,50 +11,18 @@ as.mic(x, na.rm = FALSE)
is.mic(x) is.mic(x)
} }
\arguments{ \arguments{
\item{x}{character or numeric vector} \item{x}{vector}
\item{na.rm}{a logical indicating whether missing values should be removed} \item{na.rm}{a logical indicating whether missing values should be removed}
} }
\value{ \value{
Ordered \link{factor} with additional class \code{\link{mic}}, that in mathematical operations acts as decimal numbers. Bare in mind that the outcome of any mathematical operation on MICs will return a numeric value. Ordered \link{factor} with additional class \code{\link{mic}}
} }
\description{ \description{
This ransforms vectors to a new class \code{\link{mic}}, which treats the input as decimal numbers, while maintaining operators (such as ">=") and only allowing valid MIC values known to the field of (medical) microbiology. This transforms a vector to a new class \code{\link{mic}}, which is an ordered \link{factor} with valid minimum inhibitory concentrations (MIC) as levels. Invalid MIC values will be translated as \code{NA} with a warning.
} }
\details{ \details{
To interpret MIC values as RSI values, use \code{\link[=as.rsi]{as.rsi()}} on MIC values. It supports guidelines from EUCAST and CLSI. To interpret MIC values as RSI values, use \code{\link[=as.rsi]{as.rsi()}} on MIC values. It supports guidelines from EUCAST and CLSI.
This class for MIC values is a quite a special data type: formally it is an ordered factor with valid MIC values as factor levels (to make sure only valid MIC values are retained), but for any mathematical operation it acts as decimal numbers:\preformatted{x <- random_mic(10)
x
#> Class <mic>
#> [1] 16 1 8 8 64 >=128 0.0625 32 32 16
is.factor(x)
#> [1] TRUE
x[1] * 2
#> [1] 32
median(x)
#> [1] 26
}
This makes it possible to maintain operators that often come with MIC values, such ">=" and "<=", even when filtering using numeric values in data analysis, e.g.:\preformatted{x[x > 4]
#> Class <mic>
#> [1] 16 8 8 64 >=128 32 32 16
df <- data.frame(x, hospital = "A")
subset(df, x > 4) # or with dplyr: df \%>\% filter(x > 4)
#> x hospital
#> 1 16 A
#> 5 64 A
#> 6 >=128 A
#> 8 32 A
#> 9 32 A
#> 10 16 A
}
The following \link[=groupGeneric]{generic functions} are implemented for the MIC class: \code{!}, \code{!=}, \code{\%\%}, \code{\%/\%}, \code{&}, \code{*}, \code{+}, \code{-}, \code{/}, \code{<}, \code{<=}, \code{==}, \code{>}, \code{>=}, \code{^}, \code{|}, \code{\link[=abs]{abs()}}, \code{\link[=acos]{acos()}}, \code{\link[=acosh]{acosh()}}, \code{\link[=all]{all()}}, \code{\link[=any]{any()}}, \code{\link[=asin]{asin()}}, \code{\link[=asinh]{asinh()}}, \code{\link[=atan]{atan()}}, \code{\link[=atanh]{atanh()}}, \code{\link[=ceiling]{ceiling()}}, \code{\link[=cos]{cos()}}, \code{\link[=cosh]{cosh()}}, \code{\link[=cospi]{cospi()}}, \code{\link[=cummax]{cummax()}}, \code{\link[=cummin]{cummin()}}, \code{\link[=cumprod]{cumprod()}}, \code{\link[=cumsum]{cumsum()}}, \code{\link[=digamma]{digamma()}}, \code{\link[=exp]{exp()}}, \code{\link[=expm1]{expm1()}}, \code{\link[=floor]{floor()}}, \code{\link[=gamma]{gamma()}}, \code{\link[=lgamma]{lgamma()}}, \code{\link[=log]{log()}}, \code{\link[=log1p]{log1p()}}, \code{\link[=log2]{log2()}}, \code{\link[=log10]{log10()}}, \code{\link[=max]{max()}}, \code{\link[=mean]{mean()}}, \code{\link[=min]{min()}}, \code{\link[=prod]{prod()}}, \code{\link[=range]{range()}}, \code{\link[=round]{round()}}, \code{\link[=sign]{sign()}}, \code{\link[=signif]{signif()}}, \code{\link[=sin]{sin()}}, \code{\link[=sinh]{sinh()}}, \code{\link[=sinpi]{sinpi()}}, \code{\link[=sqrt]{sqrt()}}, \code{\link[=sum]{sum()}}, \code{\link[=tan]{tan()}}, \code{\link[=tanh]{tanh()}}, \code{\link[=tanpi]{tanpi()}}, \code{\link[=trigamma]{trigamma()}} and \code{\link[=trunc]{trunc()}}. Some functions of the \code{stats} package are also implemented: \code{\link[=median]{median()}}, \code{\link[=quantile]{quantile()}}, \code{\link[=mad]{mad()}}, \code{\link[=IQR]{IQR()}}, \code{\link[=fivenum]{fivenum()}}. Also, \code{\link[=boxplot.stats]{boxplot.stats()}} is supported. Since \code{\link[=sd]{sd()}} and \code{\link[=var]{var()}} are non-generic functions, these could not be extended. Use \code{\link[=mad]{mad()}} as an alternative, or use e.g. \code{sd(as.numeric(x))} where \code{x} is your vector of MIC values.
} }
\section{Stable Lifecycle}{ \section{Stable Lifecycle}{

View File

@ -29,7 +29,6 @@ first_isolate(
points_threshold = 2, points_threshold = 2,
info = interactive(), info = interactive(),
include_unknown = FALSE, include_unknown = FALSE,
include_untested_rsi = TRUE,
... ...
) )
@ -71,21 +70,19 @@ filter_first_weighted_isolate(
\item{testcodes_exclude}{character vector with test codes that should be excluded (case-insensitive)} \item{testcodes_exclude}{character vector with test codes that should be excluded (case-insensitive)}
\item{icu_exclude}{logical to indicate whether ICU isolates should be excluded (rows with value \code{TRUE} in the column set with \code{col_icu})} \item{icu_exclude}{logical whether ICU isolates should be excluded (rows with value \code{TRUE} in the column set with \code{col_icu})}
\item{specimen_group}{value in the column set with \code{col_specimen} to filter on} \item{specimen_group}{value in the column set with \code{col_specimen} to filter on}
\item{type}{type to determine weighed isolates; can be \code{"keyantibiotics"} or \code{"points"}, see \emph{Details}} \item{type}{type to determine weighed isolates; can be \code{"keyantibiotics"} or \code{"points"}, see \emph{Details}}
\item{ignore_I}{logical to indicate whether antibiotic interpretations with \code{"I"} will be ignored when \code{type = "keyantibiotics"}, see \emph{Details}} \item{ignore_I}{logical to determine whether antibiotic interpretations with \code{"I"} will be ignored when \code{type = "keyantibiotics"}, see \emph{Details}}
\item{points_threshold}{points until the comparison of key antibiotics will lead to inclusion of an isolate when \code{type = "points"}, see \emph{Details}} \item{points_threshold}{points until the comparison of key antibiotics will lead to inclusion of an isolate when \code{type = "points"}, see \emph{Details}}
\item{info}{print progress} \item{info}{print progress}
\item{include_unknown}{logical to indicate whether 'unknown' microorganisms should be included too, i.e. microbial code \code{"UNKNOWN"}, which defaults to \code{FALSE}. For WHONET users, this means that all records with organism code \code{"con"} (\emph{contamination}) will be excluded at default. Isolates with a microbial ID of \code{NA} will always be excluded as first isolate.} \item{include_unknown}{logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code \code{"UNKNOWN"}, which defaults to \code{FALSE}. For WHONET users, this means that all records with organism code \code{"con"} (\emph{contamination}) will be excluded at default. Isolates with a microbial ID of \code{NA} will always be excluded as first isolate.}
\item{include_untested_rsi}{logical to indicate whether also rows without antibiotic results are still eligible for becoming a first isolate. Use \code{include_untested_rsi = FALSE} to always return \code{FALSE} for such rows. This checks the data set for columns of class \verb{<rsi>} and consequently requires transforming columns with antibiotic results using \code{\link[=as.rsi]{as.rsi()}} first.}
\item{...}{arguments passed on to \code{\link[=first_isolate]{first_isolate()}} when using \code{\link[=filter_first_isolate]{filter_first_isolate()}}, or arguments passed on to \code{\link[=key_antibiotics]{key_antibiotics()}} when using \code{\link[=filter_first_weighted_isolate]{filter_first_weighted_isolate()}}} \item{...}{arguments passed on to \code{\link[=first_isolate]{first_isolate()}} when using \code{\link[=filter_first_isolate]{filter_first_isolate()}}, or arguments passed on to \code{\link[=key_antibiotics]{key_antibiotics()}} when using \code{\link[=filter_first_weighted_isolate]{filter_first_weighted_isolate()}}}
} }

View File

@ -108,12 +108,10 @@ Produces a \code{ggplot2} variant of a so-called \href{https://en.wikipedia.org/
\details{ \details{
The colours for labels and points can be changed by adding another scale layer for colour, like \code{scale_colour_viridis_d()} or \code{scale_colour_brewer()}. The colours for labels and points can be changed by adding another scale layer for colour, like \code{scale_colour_viridis_d()} or \code{scale_colour_brewer()}.
} }
\section{Stable Lifecycle}{ \section{Maturing Lifecycle}{
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr} \if{html}{\figure{lifecycle_maturing.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided. The \link[=lifecycle]{lifecycle} of this function is \strong{maturing}. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome \href{https://github.com/msberends/AMR/issues}{to suggest changes at our repository} or \link[=AMR]{write us an email (see section 'Contact Us')}.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
} }
\examples{ \examples{

View File

@ -140,12 +140,10 @@ At default, the names of antibiotics will be shown on the plots using \code{\lin
\code{\link[=ggplot_rsi]{ggplot_rsi()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}. \code{\link[=ggplot_rsi]{ggplot_rsi()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}.
} }
} }
\section{Stable Lifecycle}{ \section{Maturing Lifecycle}{
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr} \if{html}{\figure{lifecycle_maturing.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided. The \link[=lifecycle]{lifecycle} of this function is \strong{maturing}. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome \href{https://github.com/msberends/AMR/issues}{to suggest changes at our repository} or \link[=AMR]{write us an email (see section 'Contact Us')}.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
} }
\section{Read more on Our Website!}{ \section{Read more on Our Website!}{

View File

@ -58,7 +58,7 @@ key_antibiotics_equal(
\item{type}{type to determine weighed isolates; can be \code{"keyantibiotics"} or \code{"points"}, see \emph{Details}} \item{type}{type to determine weighed isolates; can be \code{"keyantibiotics"} or \code{"points"}, see \emph{Details}}
\item{ignore_I}{logical to indicate whether antibiotic interpretations with \code{"I"} will be ignored when \code{type = "keyantibiotics"}, see \emph{Details}} \item{ignore_I}{logical to determine whether antibiotic interpretations with \code{"I"} will be ignored when \code{type = "keyantibiotics"}, see \emph{Details}}
\item{points_threshold}{points until the comparison of key antibiotics will lead to inclusion of an isolate when \code{type = "points"}, see \emph{Details}} \item{points_threshold}{points until the comparison of key antibiotics will lead to inclusion of an isolate when \code{type = "points"}, see \emph{Details}}

View File

@ -59,12 +59,10 @@ The \code{\link[=pca]{pca()}} function takes a \link{data.frame} as input and pe
The result of the \code{\link[=pca]{pca()}} function is a \link{prcomp} object, with an additional attribute \code{non_numeric_cols} which is a vector with the column names of all columns that do not contain numeric values. These are probably the groups and labels, and will be used by \code{\link[=ggplot_pca]{ggplot_pca()}}. The result of the \code{\link[=pca]{pca()}} function is a \link{prcomp} object, with an additional attribute \code{non_numeric_cols} which is a vector with the column names of all columns that do not contain numeric values. These are probably the groups and labels, and will be used by \code{\link[=ggplot_pca]{ggplot_pca()}}.
} }
\section{Stable Lifecycle}{ \section{Maturing Lifecycle}{
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr} \if{html}{\figure{lifecycle_maturing.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided. The \link[=lifecycle]{lifecycle} of this function is \strong{maturing}. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome \href{https://github.com/msberends/AMR/issues}{to suggest changes at our repository} or \link[=AMR]{write us an email (see section 'Contact Us')}.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
} }
\section{Read more on Our Website!}{ \section{Read more on Our Website!}{

View File

@ -35,12 +35,10 @@ The base R function \code{\link[=sample]{sample()}} is used for generating value
Generated values are based on the latest EUCAST guideline implemented in the \link{rsi_translation} data set. To create specific generated values per bug or drug, set the \code{mo} and/or \code{ab} argument. Generated values are based on the latest EUCAST guideline implemented in the \link{rsi_translation} data set. To create specific generated values per bug or drug, set the \code{mo} and/or \code{ab} argument.
} }
\section{Stable Lifecycle}{ \section{Maturing Lifecycle}{
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr} \if{html}{\figure{lifecycle_maturing.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided. The \link[=lifecycle]{lifecycle} of this function is \strong{maturing}. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome \href{https://github.com/msberends/AMR/issues}{to suggest changes at our repository} or \link[=AMR]{write us an email (see section 'Contact Us')}.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
} }
\section{Read more on Our Website!}{ \section{Read more on Our Website!}{

View File

@ -100,12 +100,10 @@ Valid options for the statistical model (argument \code{model}) are:
\item \code{"lin"} or \code{"linear"}: a linear regression model \item \code{"lin"} or \code{"linear"}: a linear regression model
} }
} }
\section{Stable Lifecycle}{ \section{Maturing Lifecycle}{
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr} \if{html}{\figure{lifecycle_maturing.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided. The \link[=lifecycle]{lifecycle} of this function is \strong{maturing}. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome \href{https://github.com/msberends/AMR/issues}{to suggest changes at our repository} or \link[=AMR]{write us an email (see section 'Contact Us')}.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
} }
\section{Interpretation of R and S/I}{ \section{Interpretation of R and S/I}{

View File

@ -196,10 +196,6 @@ test_that("first isolates work", {
expect_equal(sum(first_isolate(test_unknown)), expect_equal(sum(first_isolate(test_unknown)),
1045) 1045)
# empty rsi results
expect_equal(sum(first_isolate(example_isolates, include_untested_rsi = FALSE)),
1287)
# shortcuts # shortcuts
expect_identical(filter_first_isolate(example_isolates), expect_identical(filter_first_isolate(example_isolates),
subset(example_isolates, first_isolate(example_isolates))) subset(example_isolates, first_isolate(example_isolates)))

View File

@ -31,12 +31,12 @@ test_that("mic works", {
expect_true(as.mic("1") > as.mic("<=0.0625")) expect_true(as.mic("1") > as.mic("<=0.0625"))
expect_true(as.mic("1") < as.mic(">=32")) expect_true(as.mic("1") < as.mic(">=32"))
expect_true(is.mic(as.mic(8))) expect_true(is.mic(as.mic(8)))
expect_equal(as.double(as.mic(">=32")), 32) expect_equal(as.double(as.mic(">=32")), 32)
expect_equal(as.numeric(as.mic(">=32")), 32) expect_equal(as.numeric(as.mic(">=32")), 32)
expect_equal(as.integer(as.mic(">=32")), 32) expect_equal(as.integer(as.mic(">=32")), 32)
expect_equal(suppressWarnings(as.logical(as.mic("INVALID VALUE"))), NA) expect_equal(suppressWarnings(as.logical(as.mic("INVALID VALUE"))), NA)
# all levels should be valid MICs # all levels should be valid MICs
x <- as.mic(c(2, 4)) x <- as.mic(c(2, 4))
expect_s3_class(x[1], "mic") expect_s3_class(x[1], "mic")
@ -60,83 +60,12 @@ test_that("mic works", {
} }
expect_output(print(as.mic(c(1, 2, 4, 8)))) expect_output(print(as.mic(c(1, 2, 4, 8))))
expect_s3_class(summary(as.mic(c(2, 8))), c("summaryDefault", "table")) expect_equal(summary(as.mic(c(2, 8))),
structure(c("Class" = "mic",
"<NA>" = "0",
"Min." = "2",
"Max." = "8"), class = c("summaryDefault", "table")))
library(dplyr, warn.conflicts = FALSE) library(dplyr, warn.conflicts = FALSE)
expect_output(print(tibble(m = as.mic(2:4)))) expect_output(print(tibble(m = as.mic(2:4))))
}) })
test_that("mathematical functions on mic work", {
skip_on_cran()
x <- random_mic(50)
x_double <- as.double(gsub("[<=>]+", "", as.character(x)))
suppressWarnings(expect_identical(mean(x), mean(x_double)))
suppressWarnings(expect_identical(median(x), median(x_double)))
suppressWarnings(expect_identical(quantile(x), quantile(x_double)))
suppressWarnings(expect_identical(abs(x), abs(x_double)))
suppressWarnings(expect_identical(sign(x), sign(x_double)))
suppressWarnings(expect_identical(sqrt(x), sqrt(x_double)))
suppressWarnings(expect_identical(floor(x), floor(x_double)))
suppressWarnings(expect_identical(ceiling(x), ceiling(x_double)))
suppressWarnings(expect_identical(trunc(x), trunc(x_double)))
suppressWarnings(expect_identical(round(x), round(x_double)))
suppressWarnings(expect_identical(signif(x), signif(x_double)))
suppressWarnings(expect_identical(exp(x), exp(x_double)))
suppressWarnings(expect_identical(log(x), log(x_double)))
suppressWarnings(expect_identical(log10(x), log10(x_double)))
suppressWarnings(expect_identical(log2(x), log2(x_double)))
suppressWarnings(expect_identical(expm1(x), expm1(x_double)))
suppressWarnings(expect_identical(log1p(x), log1p(x_double)))
suppressWarnings(expect_identical(cos(x), cos(x_double)))
suppressWarnings(expect_identical(sin(x), sin(x_double)))
suppressWarnings(expect_identical(tan(x), tan(x_double)))
suppressWarnings(expect_identical(cospi(x), cospi(x_double)))
suppressWarnings(expect_identical(sinpi(x), sinpi(x_double)))
suppressWarnings(expect_identical(tanpi(x), tanpi(x_double)))
suppressWarnings(expect_identical(acos(x), acos(x_double)))
suppressWarnings(expect_identical(asin(x), asin(x_double)))
suppressWarnings(expect_identical(atan(x), atan(x_double)))
suppressWarnings(expect_identical(cosh(x), cosh(x_double)))
suppressWarnings(expect_identical(sinh(x), sinh(x_double)))
suppressWarnings(expect_identical(tanh(x), tanh(x_double)))
suppressWarnings(expect_identical(acosh(x), acosh(x_double)))
suppressWarnings(expect_identical(asinh(x), asinh(x_double)))
suppressWarnings(expect_identical(atanh(x), atanh(x_double)))
suppressWarnings(expect_identical(lgamma(x), lgamma(x_double)))
suppressWarnings(expect_identical(gamma(x), gamma(x_double)))
suppressWarnings(expect_identical(digamma(x), digamma(x_double)))
suppressWarnings(expect_identical(trigamma(x), trigamma(x_double)))
suppressWarnings(expect_identical(cumsum(x), cumsum(x_double)))
suppressWarnings(expect_identical(cumprod(x), cumprod(x_double)))
suppressWarnings(expect_identical(cummax(x), cummax(x_double)))
suppressWarnings(expect_identical(cummin(x), cummin(x_double)))
suppressWarnings(expect_identical(!x, !(x_double)))
suppressWarnings(expect_identical(all(x), all(x_double)))
suppressWarnings(expect_identical(any(x), any(x_double)))
suppressWarnings(expect_identical(sum(x), sum(x_double)))
suppressWarnings(expect_identical(prod(x), prod(x_double)))
suppressWarnings(expect_identical(min(x), min(x_double)))
suppressWarnings(expect_identical(max(x), max(x_double)))
suppressWarnings(expect_identical(range(x), range(x_double)))
el1 <- random_mic(50)
el1_double <- as.double(gsub("[<=>]+", "", as.character(el1)))
el2 <- random_mic(50)
el2_double <- as.double(gsub("[<=>]+", "", as.character(el2)))
suppressWarnings(expect_identical(el1 + el2, el1_double + el2_double))
suppressWarnings(expect_identical(el1 - el2, el1_double - el2_double))
suppressWarnings(expect_identical(el1 * el2, el1_double * el2_double))
suppressWarnings(expect_identical(el1 / el2, el1_double / el2_double))
suppressWarnings(expect_identical(el1 ^ el2, el1_double ^ el2_double))
suppressWarnings(expect_identical(el1 %% el2, el1_double %% el2_double))
suppressWarnings(expect_identical(el1 %/% el2, el1_double %/% el2_double))
suppressWarnings(expect_identical(el1 & el2, el1_double & el2_double))
suppressWarnings(expect_identical(el1 | el2, el1_double | el2_double))
suppressWarnings(expect_identical(el1 == el2, el1_double == el2_double))
suppressWarnings(expect_identical(el1 != el2, el1_double != el2_double))
suppressWarnings(expect_identical(el1 < el2, el1_double < el2_double))
suppressWarnings(expect_identical(el1 <= el2, el1_double <= el2_double))
suppressWarnings(expect_identical(el1 >= el2, el1_double >= el2_double))
suppressWarnings(expect_identical(el1 > el2, el1_double > el2_double))
})