1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-16 12:01:49 +01:00

Compare commits

..

No commits in common. "a98d0d75ea3580e6704763ac426e8a120a13d3d7" and "77d9cf1936824ce47632834d1a9c42fec8a4831f" have entirely different histories.

19 changed files with 51 additions and 86 deletions

View File

@ -33,7 +33,7 @@ echo "Running pre-commit hook..."
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if command -v Rscript > /dev/null; then
if [ "$(Rscript -e 'cat(all(c('"'pkgload'"', '"'devtools'"', '"'dplyr'"') %in% rownames(installed.packages())))')" = "TRUE" ]; then
if [ "$(Rscript -e 'cat(all(c('"'pkgload'"', '"'devtools'"', '"'dplyr'"', '"'styler'"') %in% rownames(installed.packages())))')" = "TRUE" ]; then
Rscript -e "source('data-raw/_pre_commit_hook.R')"
currentpkg=`Rscript -e "cat(pkgload::pkg_name())"`
echo "-> Adding all files in 'data-raw' to this commit"

View File

@ -58,9 +58,6 @@ jobs:
- {os: ubuntu-latest, r: 'release', allowfail: false}
- {os: windows-latest, r: 'devel', allowfail: false}
- {os: windows-latest, r: 'release', allowfail: false}
- {os: macOS-latest, r: '3.6', allowfail: false}
- {os: ubuntu-latest, r: '3.6', allowfail: false}
- {os: windows-latest, r: '3.6', allowfail: false}
env:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}

View File

@ -59,7 +59,6 @@ jobs:
- {os: ubuntu-22.04, r: '4.0', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
- {os: ubuntu-22.04, r: '3.6', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
# R 3.5 returns a strange GC error when running examples, omit the checks for that
# - {os: ubuntu-22.04, r: '3.5', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
- {os: ubuntu-22.04, r: '3.4', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
- {os: ubuntu-22.04, r: '3.3', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
- {os: ubuntu-22.04, r: '3.2', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}

View File

@ -1,6 +1,6 @@
Package: AMR
Version: 1.8.2.9078
Date: 2023-01-05
Version: 1.8.2.9076
Date: 2022-12-30
Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,4 +1,4 @@
# AMR 1.8.2.9078
# 1.8.2.9076
*(this beta version will eventually become v2.0! We're happy to reach a new major milestone soon!)*

View File

@ -966,7 +966,7 @@ unique_call_id <- function(entire_session = FALSE, match_fn = NULL) {
# and relevant system call (where 'match_fn' is being called in)
calls <- sys.calls()
in_test <- any(as.character(calls[[1]]) %like_case% "run_test_dir|run_test_file|test_all|tinytest|test_package|testthat", na.rm = TRUE)
if (!isTRUE(in_test) && !is.null(match_fn)) {
if (!isTRUE(in_test)) {
for (i in seq_len(length(calls))) {
call_clean <- gsub("[^a-zA-Z0-9_().-]", "", as.character(calls[[i]]), perl = TRUE)
if (match_fn %in% call_clean || any(call_clean %like% paste0(match_fn, "\\("), na.rm = TRUE)) {
@ -1262,7 +1262,6 @@ create_pillar_column <- function(x, ...) {
as_original_data_class <- function(df, old_class = NULL) {
if ("tbl_df" %in% old_class && pkg_is_available("tibble", also_load = FALSE)) {
# this will then also remove groups
fn <- import_fn("as_tibble", "tibble")
} else if ("tbl_ts" %in% old_class && pkg_is_available("tsibble", also_load = FALSE)) {
fn <- import_fn("as_tsibble", "tsibble")
@ -1271,7 +1270,7 @@ as_original_data_class <- function(df, old_class = NULL) {
} else if ("tabyl" %in% old_class && pkg_is_available("janitor", also_load = FALSE)) {
fn <- import_fn("as_tabyl", "janitor")
} else {
fn <- function(x) base::as.data.frame(df, stringsAsFactors = FALSE)
fn <- base::as.data.frame
}
fn(df)
}

View File

@ -36,7 +36,7 @@
#' @param language language of the returned text, defaults to system language (see [get_AMR_locale()]) and can also be set with `getOption("AMR_locale")`. Use `language = NULL` or `language = ""` to prevent translation.
#' @param administration way of administration, either `"oral"` or `"iv"`
#' @param open browse the URL using [utils::browseURL()]
#' @param ... in case of [set_ab_names()] and `data` is a [data.frame]: columns to select (supports tidy selection such as `column1:column4`), otherwise other arguments passed on to [as.ab()]
#' @param ... in case of [set_ab_names()] and `data` is a [data.frame]: variables to select (supports tidy selection such as `column1:column4`), otherwise other arguments passed on to [as.ab()]
#' @param data a [data.frame] of which the columns need to be renamed, or a [character] vector of column names
#' @param snake_case a [logical] to indicate whether the names should be in so-called [snake case](https://en.wikipedia.org/wiki/Snake_case): in lower case and all spaces/slashes replaced with an underscore (`_`)
#' @param only_first a [logical] to indicate whether only the first ATC code must be returned, with giving preference to J0-codes (i.e., the antimicrobial drug group)

View File

@ -161,7 +161,7 @@ bug_drug_combinations <- function(x,
out <- run_it(x)
}
rownames(out) <- NULL
out <- as_original_data_class(out, class(x.bak)) # will remove tibble groups
out <- as_original_data_class(out, class(x.bak))
structure(out, class = c("bug_drug_combinations", ifelse(data_has_groups, "grouped", character(0)), class(out)))
}
@ -322,7 +322,7 @@ format.bug_drug_combinations <- function(x,
}
rownames(y) <- NULL
as_original_data_class(y, class(x.bak)) # will remove tibble groups
as_original_data_class(y, class(x.bak))
}
#' @method print bug_drug_combinations

View File

@ -77,7 +77,7 @@
#'
#' ### Using taxonomic properties in rules
#'
#' There is one exception in columns used for the rules: all column names of the [microorganisms] data set can also be used, but do not have to exist in the data set. These column names are: `r vector_and(colnames(microorganisms), sort = FALSE)`. Thus, this next example will work as well, despite the fact that the `df` data set does not contain a column `genus`:
#' There is one exception in variables used for the rules: all column names of the [microorganisms] data set can also be used, but do not have to exist in the data set. These column names are: `r vector_and(colnames(microorganisms), sort = FALSE)`. Thus, this next example will work as well, despite the fact that the `df` data set does not contain a column `genus`:
#'
#' ```r
#' y <- custom_eucast_rules(TZP == "S" & genus == "Klebsiella" ~ aminopenicillins == "S",

View File

@ -1035,7 +1035,7 @@ eucast_rules <- function(x,
# Return data set ---------------------------------------------------------
if (isTRUE(verbose)) {
as_original_data_class(verbose_info, old_attributes$class) # will remove tibble groups
as_original_data_class(verbose_info, old_attributes$class)
} else {
# x was analysed with only unique rows, so join everything together again
x <- x[, c(cols_ab, ".rowid"), drop = FALSE]
@ -1043,9 +1043,8 @@ eucast_rules <- function(x,
x.bak <- x.bak %pm>%
pm_left_join(x, by = ".rowid")
x.bak <- x.bak[, old_cols, drop = FALSE]
# reset original attributes
# reset original attributes, no need for as_original_data_class() here
attributes(x.bak) <- old_attributes
x.bak <- as_original_data_class(x.bak, old_class = class(x.bak)) # will remove tibble groups
x.bak
}
}

View File

@ -185,5 +185,5 @@ join_microorganisms <- function(type, x, by, suffix, ...) {
warning_("in `", type, "_microorganisms()`: the newly joined data set contains ", nrow(joined) - nrow(x), " rows more than the number of rows of `x`.")
}
as_original_data_class(joined, class(x.bak)) # will remove tibble groups
as_original_data_class(joined, class(x.bak))
}

View File

@ -30,40 +30,30 @@
#' Calculate the Mean AMR Distance
#'
#' Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand.
#' @param x a vector of class [rsi][as.rsi()], [mic][as.mic()] or [disk][as.disk()], or a [data.frame] containing columns of any of these classes
#' @param x a vector of class [rsi][as.rsi()], [rsi][as.rsi()] or [rsi][as.rsi()], or a [data.frame] containing columns of any of these classes
#' @param ... variables to select (supports [tidyselect language][tidyselect::language] such as `column1:column4` and `where(is.mic)`, and can thus also be [antibiotic selectors][ab_selector()]
#' @param combine_SI a [logical] to indicate whether all values of S and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant), defaults to `TRUE`
#' @details The mean AMR distance is effectively [the Z-score](https://en.wikipedia.org/wiki/Standard_score); a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand.
#' @details The mean AMR distance is a normalised numeric value to compare AMR test results and can help to identify similar isolates, without comparing antibiograms by hand. For common numeric data this distance is equal to [Z scores](https://en.wikipedia.org/wiki/Standard_score) (the number of standard deviations from the mean).
#'
#' MIC values (see [as.mic()]) are transformed with [log2()] first; their distance is thus calculated as `(log2(x) - mean(log2(x))) / sd(log2(x))`.
#' MIC values (see [as.mic()]) are transformed with [log2()] first; their distance is calculated as `(log2(x) - mean(log2(x))) / sd(log2(x))`.
#'
#' R/SI values (see [as.rsi()]) are transformed using `"S"` = 1, `"I"` = 2, and `"R"` = 3. If `combine_SI` is `TRUE` (default), the `"I"` will be considered to be 1.
#'
#' For data sets, the mean AMR distance will be calculated per column, after which the mean per row will be returned, see *Examples*.
#' For data sets, the mean AMR distance will be calculated per variable, after which the mean of all columns will returned per row (using [rowMeans()]), see *Examples*.
#'
#' Use [amr_distance_from_row()] to subtract distances from the distance of one row, see *Examples*.
#' @section Interpretation:
#' Isolates with distances less than 0.01 difference from each other should be considered similar. Differences lower than 0.025 should be considered suspicious.
#' @export
#' @examples
#' rsi <- random_rsi(10)
#' rsi
#' mean_amr_distance(rsi)
#'
#' mic <- random_mic(10)
#' mic
#' mean_amr_distance(mic)
#' # equal to the Z-score of their log2:
#' (log2(mic) - mean(log2(mic))) / sd(log2(mic))
#'
#' disk <- random_disk(10)
#' disk
#' mean_amr_distance(disk)
#' x <- random_mic(10)
#' x
#' mean_amr_distance(x)
#'
#' y <- data.frame(
#' id = LETTERS[1:10],
#' amox = random_rsi(10, ab = "amox", mo = "Escherichia coli"),
#' cipr = random_disk(10, ab = "cipr", mo = "Escherichia coli"),
#' amox = random_mic(10, ab = "amox", mo = "Escherichia coli"),
#' cipr = random_mic(10, ab = "cipr", mo = "Escherichia coli"),
#' gent = random_mic(10, ab = "gent", mo = "Escherichia coli"),
#' tobr = random_mic(10, ab = "tobr", mo = "Escherichia coli")
#' )
@ -75,7 +65,7 @@
#' if (require("dplyr")) {
#' y %>%
#' mutate(
#' amr_distance = mean_amr_distance(y),
#' amr_distance = mean_amr_distance(., where(is.mic)),
#' check_id_C = amr_distance_from_row(amr_distance, id == "C")
#' ) %>%
#' arrange(check_id_C)
@ -86,8 +76,8 @@
#' filter(mo_genus() == "Enterococcus" & mo_species() != "") %>%
#' select(mo, TCY, carbapenems()) %>%
#' group_by(mo) %>%
#' mutate(dist = mean_amr_distance(.)) %>%
#' arrange(mo, dist)
#' mutate(d = mean_amr_distance(., where(is.rsi))) %>%
#' arrange(mo, d)
#' }
mean_amr_distance <- function(x, ...) {
UseMethod("mean_amr_distance")
@ -97,7 +87,6 @@ mean_amr_distance <- function(x, ...) {
#' @export
mean_amr_distance.default <- function(x, ...) {
x <- as.double(x)
# calculate z-score
(x - mean(x, na.rm = TRUE)) / stats::sd(x, na.rm = TRUE)
}
@ -131,7 +120,6 @@ mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
if (is_null_or_grouped_tbl(df)) {
df <- get_current_data("x", -2)
}
df <- as.data.frame(df, stringsAsFactors = FALSE)
if (tryCatch(length(list(...)) > 0, error = function(e) TRUE)) {
out <- tryCatch(suppressWarnings(c(...)), error = function(e) NULL)
if (!is.null(out)) {
@ -140,18 +128,13 @@ mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
df <- pm_select(df, ...)
}
}
df_classes <- colnames(df)[vapply(FUN.VALUE = logical(1), df, function(x) is.disk(x) | is.mic(x) | is.disk(x), USE.NAMES = FALSE)]
df_antibiotics <- unname(get_column_abx(df, info = FALSE))
df <- df[, colnames(df)[colnames(df) %in% union(df_classes, df_antibiotics)], drop = FALSE]
stop_if(ncol(df) < 2,
"data set must contain at least two variables",
call = -2
)
if (message_not_thrown_before("mean_amr_distance", "groups")) {
message_("Calculating mean AMR distance based on columns ", vector_and(colnames(df), sort = FALSE))
message_("Calculating mean AMR distance based on columns ", vector_and(colnames(df)))
}
res <- vapply(
FUN.VALUE = double(nrow(df)),
df,
@ -166,7 +149,7 @@ mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
}
}
res <- rowMeans(res, na.rm = TRUE)
res[is.infinite(res) | is.nan(res)] <- 0
res[is.infinite(res)] <- 0
res
}

View File

@ -274,7 +274,7 @@ resistance_predict <- function(x,
df_prediction$value <- ifelse(df_prediction$value > 1, 1, pmax(df_prediction$value, 0))
df_prediction <- df_prediction[order(df_prediction$year), , drop = FALSE]
out <- as_original_data_class(df_prediction, class(x.bak)) # will remove tibble groups
out <- as_original_data_class(df_prediction, class(x.bak))
structure(out,
class = c("resistance_predict", class(out)),
I_as_S = I_as_S,

View File

@ -371,6 +371,6 @@ rsi_calc_df <- function(type, # "proportion", "count" or "both"
}
rownames(out) <- NULL
out <- as_original_data_class(out, class(data.bak)) # will remove tibble groups
out <- as_original_data_class(out, class(data.bak))
structure(out, class = c("rsi_df", class(out)))
}

Binary file not shown.

View File

@ -486,16 +486,14 @@ suppressMessages(devtools::document(quiet = TRUE))
# Style pkg ---------------------------------------------------------------
if (!"styler" %in% rownames(utils::installed.packages())) {
message("Package 'styler' not installed!")
} else if (interactive()) {
# # only when sourcing this file ourselves
# usethis::ui_info("Styling package")
# styler::style_pkg(
# style = styler::tidyverse_style,
# filetype = c("R", "Rmd")
# )
}
# if (interactive()) {
# # only when sourcing this file ourselves
# usethis::ui_info("Styling package")
# styler::style_pkg(
# style = styler::tidyverse_style,
# filetype = c("R", "Rmd")
# )
# }
# Finished ----------------------------------------------------------------

View File

@ -62,7 +62,7 @@ set_ab_names(
\item{tolower}{a \link{logical} to indicate whether the first \link{character} of every output should be transformed to a lower case \link{character}. This will lead to e.g. "polymyxin B" and not "polymyxin b".}
\item{...}{in case of \code{\link[=set_ab_names]{set_ab_names()}} and \code{data} is a \link{data.frame}: columns to select (supports tidy selection such as \code{column1:column4}), otherwise other arguments passed on to \code{\link[=as.ab]{as.ab()}}}
\item{...}{in case of \code{\link[=set_ab_names]{set_ab_names()}} and \code{data} is a \link{data.frame}: variables to select (supports tidy selection such as \code{column1:column4}), otherwise other arguments passed on to \code{\link[=as.ab]{as.ab()}}}
\item{only_first}{a \link{logical} to indicate whether only the first ATC code must be returned, with giving preference to J0-codes (i.e., the antimicrobial drug group)}

View File

@ -60,7 +60,7 @@ eucast_rules(df, rules = "custom", custom_rules = x, info = FALSE)
\subsection{Using taxonomic properties in rules}{
There is one exception in columns used for the rules: all column names of the \link{microorganisms} data set can also be used, but do not have to exist in the data set. These column names are: "mo", "fullname", "status", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "source", "lpsn", "lpsn_parent", "lpsn_renamed_to", "gbif", "gbif_parent", "gbif_renamed_to", "prevalence" and "snomed". Thus, this next example will work as well, despite the fact that the \code{df} data set does not contain a column \code{genus}:
There is one exception in variables used for the rules: all column names of the \link{microorganisms} data set can also be used, but do not have to exist in the data set. These column names are: "mo", "fullname", "status", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "source", "lpsn", "lpsn_parent", "lpsn_renamed_to", "gbif", "gbif_parent", "gbif_renamed_to", "prevalence" and "snomed". Thus, this next example will work as well, despite the fact that the \code{df} data set does not contain a column \code{genus}:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{y <- custom_eucast_rules(TZP == "S" & genus == "Klebsiella" ~ aminopenicillins == "S",
TZP == "R" & genus == "Klebsiella" ~ aminopenicillins == "R")

View File

@ -16,7 +16,7 @@ mean_amr_distance(x, ...)
amr_distance_from_row(amr_distance, row)
}
\arguments{
\item{x}{a vector of class \link[=as.rsi]{rsi}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes}
\item{x}{a vector of class \link[=as.rsi]{rsi}, \link[=as.rsi]{rsi} or \link[=as.rsi]{rsi}, or a \link{data.frame} containing columns of any of these classes}
\item{...}{variables to select (supports \link[tidyselect:language]{tidyselect language} such as \code{column1:column4} and \code{where(is.mic)}, and can thus also be \link[=ab_selector]{antibiotic selectors}}
@ -30,13 +30,13 @@ amr_distance_from_row(amr_distance, row)
Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand.
}
\details{
The mean AMR distance is effectively \href{https://en.wikipedia.org/wiki/Standard_score}{the Z-score}; a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand.
The mean AMR distance is a normalised numeric value to compare AMR test results and can help to identify similar isolates, without comparing antibiograms by hand. For common numeric data this distance is equal to \href{https://en.wikipedia.org/wiki/Standard_score}{Z scores} (the number of standard deviations from the mean).
MIC values (see \code{\link[=as.mic]{as.mic()}}) are transformed with \code{\link[=log2]{log2()}} first; their distance is thus calculated as \code{(log2(x) - mean(log2(x))) / sd(log2(x))}.
MIC values (see \code{\link[=as.mic]{as.mic()}}) are transformed with \code{\link[=log2]{log2()}} first; their distance is calculated as \code{(log2(x) - mean(log2(x))) / sd(log2(x))}.
R/SI values (see \code{\link[=as.rsi]{as.rsi()}}) are transformed using \code{"S"} = 1, \code{"I"} = 2, and \code{"R"} = 3. If \code{combine_SI} is \code{TRUE} (default), the \code{"I"} will be considered to be 1.
For data sets, the mean AMR distance will be calculated per column, after which the mean per row will be returned, see \emph{Examples}.
For data sets, the mean AMR distance will be calculated per variable, after which the mean of all columns will returned per row (using \code{\link[=rowMeans]{rowMeans()}}), see \emph{Examples}.
Use \code{\link[=amr_distance_from_row]{amr_distance_from_row()}} to subtract distances from the distance of one row, see \emph{Examples}.
}
@ -46,24 +46,14 @@ Isolates with distances less than 0.01 difference from each other should be cons
}
\examples{
rsi <- random_rsi(10)
rsi
mean_amr_distance(rsi)
mic <- random_mic(10)
mic
mean_amr_distance(mic)
# equal to the Z-score of their log2:
(log2(mic) - mean(log2(mic))) / sd(log2(mic))
disk <- random_disk(10)
disk
mean_amr_distance(disk)
x <- random_mic(10)
x
mean_amr_distance(x)
y <- data.frame(
id = LETTERS[1:10],
amox = random_rsi(10, ab = "amox", mo = "Escherichia coli"),
cipr = random_disk(10, ab = "cipr", mo = "Escherichia coli"),
amox = random_mic(10, ab = "amox", mo = "Escherichia coli"),
cipr = random_mic(10, ab = "cipr", mo = "Escherichia coli"),
gent = random_mic(10, ab = "gent", mo = "Escherichia coli"),
tobr = random_mic(10, ab = "tobr", mo = "Escherichia coli")
)
@ -75,7 +65,7 @@ y[order(y$amr_distance), ]
if (require("dplyr")) {
y \%>\%
mutate(
amr_distance = mean_amr_distance(y),
amr_distance = mean_amr_distance(., where(is.mic)),
check_id_C = amr_distance_from_row(amr_distance, id == "C")
) \%>\%
arrange(check_id_C)
@ -86,7 +76,7 @@ if (require("dplyr")) {
filter(mo_genus() == "Enterococcus" & mo_species() != "") \%>\%
select(mo, TCY, carbapenems()) \%>\%
group_by(mo) \%>\%
mutate(dist = mean_amr_distance(.)) \%>\%
arrange(mo, dist)
mutate(d = mean_amr_distance(., where(is.rsi))) \%>\%
arrange(mo, d)
}
}