1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-16 18:11:37 +01:00

Compare commits

..

No commits in common. "a98d0d75ea3580e6704763ac426e8a120a13d3d7" and "77d9cf1936824ce47632834d1a9c42fec8a4831f" have entirely different histories.

19 changed files with 51 additions and 86 deletions

View File

@ -33,7 +33,7 @@ echo "Running pre-commit hook..."
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if command -v Rscript > /dev/null; then if command -v Rscript > /dev/null; then
if [ "$(Rscript -e 'cat(all(c('"'pkgload'"', '"'devtools'"', '"'dplyr'"') %in% rownames(installed.packages())))')" = "TRUE" ]; then if [ "$(Rscript -e 'cat(all(c('"'pkgload'"', '"'devtools'"', '"'dplyr'"', '"'styler'"') %in% rownames(installed.packages())))')" = "TRUE" ]; then
Rscript -e "source('data-raw/_pre_commit_hook.R')" Rscript -e "source('data-raw/_pre_commit_hook.R')"
currentpkg=`Rscript -e "cat(pkgload::pkg_name())"` currentpkg=`Rscript -e "cat(pkgload::pkg_name())"`
echo "-> Adding all files in 'data-raw' to this commit" echo "-> Adding all files in 'data-raw' to this commit"

View File

@ -58,9 +58,6 @@ jobs:
- {os: ubuntu-latest, r: 'release', allowfail: false} - {os: ubuntu-latest, r: 'release', allowfail: false}
- {os: windows-latest, r: 'devel', allowfail: false} - {os: windows-latest, r: 'devel', allowfail: false}
- {os: windows-latest, r: 'release', allowfail: false} - {os: windows-latest, r: 'release', allowfail: false}
- {os: macOS-latest, r: '3.6', allowfail: false}
- {os: ubuntu-latest, r: '3.6', allowfail: false}
- {os: windows-latest, r: '3.6', allowfail: false}
env: env:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }} GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}

View File

@ -59,7 +59,6 @@ jobs:
- {os: ubuntu-22.04, r: '4.0', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"} - {os: ubuntu-22.04, r: '4.0', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
- {os: ubuntu-22.04, r: '3.6', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"} - {os: ubuntu-22.04, r: '3.6', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
# R 3.5 returns a strange GC error when running examples, omit the checks for that # R 3.5 returns a strange GC error when running examples, omit the checks for that
# - {os: ubuntu-22.04, r: '3.5', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
- {os: ubuntu-22.04, r: '3.4', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"} - {os: ubuntu-22.04, r: '3.4', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
- {os: ubuntu-22.04, r: '3.3', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"} - {os: ubuntu-22.04, r: '3.3', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}
- {os: ubuntu-22.04, r: '3.2', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"} - {os: ubuntu-22.04, r: '3.2', allowfail: false, rspm: "https://packagemanager.rstudio.com/cran/__linux__/jammy/latest"}

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 1.8.2.9078 Version: 1.8.2.9076
Date: 2023-01-05 Date: 2022-12-30
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,4 +1,4 @@
# AMR 1.8.2.9078 # 1.8.2.9076
*(this beta version will eventually become v2.0! We're happy to reach a new major milestone soon!)* *(this beta version will eventually become v2.0! We're happy to reach a new major milestone soon!)*

View File

@ -966,7 +966,7 @@ unique_call_id <- function(entire_session = FALSE, match_fn = NULL) {
# and relevant system call (where 'match_fn' is being called in) # and relevant system call (where 'match_fn' is being called in)
calls <- sys.calls() calls <- sys.calls()
in_test <- any(as.character(calls[[1]]) %like_case% "run_test_dir|run_test_file|test_all|tinytest|test_package|testthat", na.rm = TRUE) in_test <- any(as.character(calls[[1]]) %like_case% "run_test_dir|run_test_file|test_all|tinytest|test_package|testthat", na.rm = TRUE)
if (!isTRUE(in_test) && !is.null(match_fn)) { if (!isTRUE(in_test)) {
for (i in seq_len(length(calls))) { for (i in seq_len(length(calls))) {
call_clean <- gsub("[^a-zA-Z0-9_().-]", "", as.character(calls[[i]]), perl = TRUE) call_clean <- gsub("[^a-zA-Z0-9_().-]", "", as.character(calls[[i]]), perl = TRUE)
if (match_fn %in% call_clean || any(call_clean %like% paste0(match_fn, "\\("), na.rm = TRUE)) { if (match_fn %in% call_clean || any(call_clean %like% paste0(match_fn, "\\("), na.rm = TRUE)) {
@ -1262,7 +1262,6 @@ create_pillar_column <- function(x, ...) {
as_original_data_class <- function(df, old_class = NULL) { as_original_data_class <- function(df, old_class = NULL) {
if ("tbl_df" %in% old_class && pkg_is_available("tibble", also_load = FALSE)) { if ("tbl_df" %in% old_class && pkg_is_available("tibble", also_load = FALSE)) {
# this will then also remove groups
fn <- import_fn("as_tibble", "tibble") fn <- import_fn("as_tibble", "tibble")
} else if ("tbl_ts" %in% old_class && pkg_is_available("tsibble", also_load = FALSE)) { } else if ("tbl_ts" %in% old_class && pkg_is_available("tsibble", also_load = FALSE)) {
fn <- import_fn("as_tsibble", "tsibble") fn <- import_fn("as_tsibble", "tsibble")
@ -1271,7 +1270,7 @@ as_original_data_class <- function(df, old_class = NULL) {
} else if ("tabyl" %in% old_class && pkg_is_available("janitor", also_load = FALSE)) { } else if ("tabyl" %in% old_class && pkg_is_available("janitor", also_load = FALSE)) {
fn <- import_fn("as_tabyl", "janitor") fn <- import_fn("as_tabyl", "janitor")
} else { } else {
fn <- function(x) base::as.data.frame(df, stringsAsFactors = FALSE) fn <- base::as.data.frame
} }
fn(df) fn(df)
} }

View File

@ -36,7 +36,7 @@
#' @param language language of the returned text, defaults to system language (see [get_AMR_locale()]) and can also be set with `getOption("AMR_locale")`. Use `language = NULL` or `language = ""` to prevent translation. #' @param language language of the returned text, defaults to system language (see [get_AMR_locale()]) and can also be set with `getOption("AMR_locale")`. Use `language = NULL` or `language = ""` to prevent translation.
#' @param administration way of administration, either `"oral"` or `"iv"` #' @param administration way of administration, either `"oral"` or `"iv"`
#' @param open browse the URL using [utils::browseURL()] #' @param open browse the URL using [utils::browseURL()]
#' @param ... in case of [set_ab_names()] and `data` is a [data.frame]: columns to select (supports tidy selection such as `column1:column4`), otherwise other arguments passed on to [as.ab()] #' @param ... in case of [set_ab_names()] and `data` is a [data.frame]: variables to select (supports tidy selection such as `column1:column4`), otherwise other arguments passed on to [as.ab()]
#' @param data a [data.frame] of which the columns need to be renamed, or a [character] vector of column names #' @param data a [data.frame] of which the columns need to be renamed, or a [character] vector of column names
#' @param snake_case a [logical] to indicate whether the names should be in so-called [snake case](https://en.wikipedia.org/wiki/Snake_case): in lower case and all spaces/slashes replaced with an underscore (`_`) #' @param snake_case a [logical] to indicate whether the names should be in so-called [snake case](https://en.wikipedia.org/wiki/Snake_case): in lower case and all spaces/slashes replaced with an underscore (`_`)
#' @param only_first a [logical] to indicate whether only the first ATC code must be returned, with giving preference to J0-codes (i.e., the antimicrobial drug group) #' @param only_first a [logical] to indicate whether only the first ATC code must be returned, with giving preference to J0-codes (i.e., the antimicrobial drug group)

View File

@ -161,7 +161,7 @@ bug_drug_combinations <- function(x,
out <- run_it(x) out <- run_it(x)
} }
rownames(out) <- NULL rownames(out) <- NULL
out <- as_original_data_class(out, class(x.bak)) # will remove tibble groups out <- as_original_data_class(out, class(x.bak))
structure(out, class = c("bug_drug_combinations", ifelse(data_has_groups, "grouped", character(0)), class(out))) structure(out, class = c("bug_drug_combinations", ifelse(data_has_groups, "grouped", character(0)), class(out)))
} }
@ -322,7 +322,7 @@ format.bug_drug_combinations <- function(x,
} }
rownames(y) <- NULL rownames(y) <- NULL
as_original_data_class(y, class(x.bak)) # will remove tibble groups as_original_data_class(y, class(x.bak))
} }
#' @method print bug_drug_combinations #' @method print bug_drug_combinations

View File

@ -77,7 +77,7 @@
#' #'
#' ### Using taxonomic properties in rules #' ### Using taxonomic properties in rules
#' #'
#' There is one exception in columns used for the rules: all column names of the [microorganisms] data set can also be used, but do not have to exist in the data set. These column names are: `r vector_and(colnames(microorganisms), sort = FALSE)`. Thus, this next example will work as well, despite the fact that the `df` data set does not contain a column `genus`: #' There is one exception in variables used for the rules: all column names of the [microorganisms] data set can also be used, but do not have to exist in the data set. These column names are: `r vector_and(colnames(microorganisms), sort = FALSE)`. Thus, this next example will work as well, despite the fact that the `df` data set does not contain a column `genus`:
#' #'
#' ```r #' ```r
#' y <- custom_eucast_rules(TZP == "S" & genus == "Klebsiella" ~ aminopenicillins == "S", #' y <- custom_eucast_rules(TZP == "S" & genus == "Klebsiella" ~ aminopenicillins == "S",

View File

@ -1035,7 +1035,7 @@ eucast_rules <- function(x,
# Return data set --------------------------------------------------------- # Return data set ---------------------------------------------------------
if (isTRUE(verbose)) { if (isTRUE(verbose)) {
as_original_data_class(verbose_info, old_attributes$class) # will remove tibble groups as_original_data_class(verbose_info, old_attributes$class)
} else { } else {
# x was analysed with only unique rows, so join everything together again # x was analysed with only unique rows, so join everything together again
x <- x[, c(cols_ab, ".rowid"), drop = FALSE] x <- x[, c(cols_ab, ".rowid"), drop = FALSE]
@ -1043,9 +1043,8 @@ eucast_rules <- function(x,
x.bak <- x.bak %pm>% x.bak <- x.bak %pm>%
pm_left_join(x, by = ".rowid") pm_left_join(x, by = ".rowid")
x.bak <- x.bak[, old_cols, drop = FALSE] x.bak <- x.bak[, old_cols, drop = FALSE]
# reset original attributes # reset original attributes, no need for as_original_data_class() here
attributes(x.bak) <- old_attributes attributes(x.bak) <- old_attributes
x.bak <- as_original_data_class(x.bak, old_class = class(x.bak)) # will remove tibble groups
x.bak x.bak
} }
} }

View File

@ -185,5 +185,5 @@ join_microorganisms <- function(type, x, by, suffix, ...) {
warning_("in `", type, "_microorganisms()`: the newly joined data set contains ", nrow(joined) - nrow(x), " rows more than the number of rows of `x`.") warning_("in `", type, "_microorganisms()`: the newly joined data set contains ", nrow(joined) - nrow(x), " rows more than the number of rows of `x`.")
} }
as_original_data_class(joined, class(x.bak)) # will remove tibble groups as_original_data_class(joined, class(x.bak))
} }

View File

@ -30,40 +30,30 @@
#' Calculate the Mean AMR Distance #' Calculate the Mean AMR Distance
#' #'
#' Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand. #' Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand.
#' @param x a vector of class [rsi][as.rsi()], [mic][as.mic()] or [disk][as.disk()], or a [data.frame] containing columns of any of these classes #' @param x a vector of class [rsi][as.rsi()], [rsi][as.rsi()] or [rsi][as.rsi()], or a [data.frame] containing columns of any of these classes
#' @param ... variables to select (supports [tidyselect language][tidyselect::language] such as `column1:column4` and `where(is.mic)`, and can thus also be [antibiotic selectors][ab_selector()] #' @param ... variables to select (supports [tidyselect language][tidyselect::language] such as `column1:column4` and `where(is.mic)`, and can thus also be [antibiotic selectors][ab_selector()]
#' @param combine_SI a [logical] to indicate whether all values of S and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant), defaults to `TRUE` #' @param combine_SI a [logical] to indicate whether all values of S and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant), defaults to `TRUE`
#' @details The mean AMR distance is effectively [the Z-score](https://en.wikipedia.org/wiki/Standard_score); a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand. #' @details The mean AMR distance is a normalised numeric value to compare AMR test results and can help to identify similar isolates, without comparing antibiograms by hand. For common numeric data this distance is equal to [Z scores](https://en.wikipedia.org/wiki/Standard_score) (the number of standard deviations from the mean).
#' #'
#' MIC values (see [as.mic()]) are transformed with [log2()] first; their distance is thus calculated as `(log2(x) - mean(log2(x))) / sd(log2(x))`. #' MIC values (see [as.mic()]) are transformed with [log2()] first; their distance is calculated as `(log2(x) - mean(log2(x))) / sd(log2(x))`.
#' #'
#' R/SI values (see [as.rsi()]) are transformed using `"S"` = 1, `"I"` = 2, and `"R"` = 3. If `combine_SI` is `TRUE` (default), the `"I"` will be considered to be 1. #' R/SI values (see [as.rsi()]) are transformed using `"S"` = 1, `"I"` = 2, and `"R"` = 3. If `combine_SI` is `TRUE` (default), the `"I"` will be considered to be 1.
#' #'
#' For data sets, the mean AMR distance will be calculated per column, after which the mean per row will be returned, see *Examples*. #' For data sets, the mean AMR distance will be calculated per variable, after which the mean of all columns will returned per row (using [rowMeans()]), see *Examples*.
#' #'
#' Use [amr_distance_from_row()] to subtract distances from the distance of one row, see *Examples*. #' Use [amr_distance_from_row()] to subtract distances from the distance of one row, see *Examples*.
#' @section Interpretation: #' @section Interpretation:
#' Isolates with distances less than 0.01 difference from each other should be considered similar. Differences lower than 0.025 should be considered suspicious. #' Isolates with distances less than 0.01 difference from each other should be considered similar. Differences lower than 0.025 should be considered suspicious.
#' @export #' @export
#' @examples #' @examples
#' rsi <- random_rsi(10) #' x <- random_mic(10)
#' rsi #' x
#' mean_amr_distance(rsi) #' mean_amr_distance(x)
#'
#' mic <- random_mic(10)
#' mic
#' mean_amr_distance(mic)
#' # equal to the Z-score of their log2:
#' (log2(mic) - mean(log2(mic))) / sd(log2(mic))
#'
#' disk <- random_disk(10)
#' disk
#' mean_amr_distance(disk)
#' #'
#' y <- data.frame( #' y <- data.frame(
#' id = LETTERS[1:10], #' id = LETTERS[1:10],
#' amox = random_rsi(10, ab = "amox", mo = "Escherichia coli"), #' amox = random_mic(10, ab = "amox", mo = "Escherichia coli"),
#' cipr = random_disk(10, ab = "cipr", mo = "Escherichia coli"), #' cipr = random_mic(10, ab = "cipr", mo = "Escherichia coli"),
#' gent = random_mic(10, ab = "gent", mo = "Escherichia coli"), #' gent = random_mic(10, ab = "gent", mo = "Escherichia coli"),
#' tobr = random_mic(10, ab = "tobr", mo = "Escherichia coli") #' tobr = random_mic(10, ab = "tobr", mo = "Escherichia coli")
#' ) #' )
@ -75,7 +65,7 @@
#' if (require("dplyr")) { #' if (require("dplyr")) {
#' y %>% #' y %>%
#' mutate( #' mutate(
#' amr_distance = mean_amr_distance(y), #' amr_distance = mean_amr_distance(., where(is.mic)),
#' check_id_C = amr_distance_from_row(amr_distance, id == "C") #' check_id_C = amr_distance_from_row(amr_distance, id == "C")
#' ) %>% #' ) %>%
#' arrange(check_id_C) #' arrange(check_id_C)
@ -86,8 +76,8 @@
#' filter(mo_genus() == "Enterococcus" & mo_species() != "") %>% #' filter(mo_genus() == "Enterococcus" & mo_species() != "") %>%
#' select(mo, TCY, carbapenems()) %>% #' select(mo, TCY, carbapenems()) %>%
#' group_by(mo) %>% #' group_by(mo) %>%
#' mutate(dist = mean_amr_distance(.)) %>% #' mutate(d = mean_amr_distance(., where(is.rsi))) %>%
#' arrange(mo, dist) #' arrange(mo, d)
#' } #' }
mean_amr_distance <- function(x, ...) { mean_amr_distance <- function(x, ...) {
UseMethod("mean_amr_distance") UseMethod("mean_amr_distance")
@ -97,7 +87,6 @@ mean_amr_distance <- function(x, ...) {
#' @export #' @export
mean_amr_distance.default <- function(x, ...) { mean_amr_distance.default <- function(x, ...) {
x <- as.double(x) x <- as.double(x)
# calculate z-score
(x - mean(x, na.rm = TRUE)) / stats::sd(x, na.rm = TRUE) (x - mean(x, na.rm = TRUE)) / stats::sd(x, na.rm = TRUE)
} }
@ -131,7 +120,6 @@ mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
if (is_null_or_grouped_tbl(df)) { if (is_null_or_grouped_tbl(df)) {
df <- get_current_data("x", -2) df <- get_current_data("x", -2)
} }
df <- as.data.frame(df, stringsAsFactors = FALSE)
if (tryCatch(length(list(...)) > 0, error = function(e) TRUE)) { if (tryCatch(length(list(...)) > 0, error = function(e) TRUE)) {
out <- tryCatch(suppressWarnings(c(...)), error = function(e) NULL) out <- tryCatch(suppressWarnings(c(...)), error = function(e) NULL)
if (!is.null(out)) { if (!is.null(out)) {
@ -140,18 +128,13 @@ mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
df <- pm_select(df, ...) df <- pm_select(df, ...)
} }
} }
df_classes <- colnames(df)[vapply(FUN.VALUE = logical(1), df, function(x) is.disk(x) | is.mic(x) | is.disk(x), USE.NAMES = FALSE)]
df_antibiotics <- unname(get_column_abx(df, info = FALSE))
df <- df[, colnames(df)[colnames(df) %in% union(df_classes, df_antibiotics)], drop = FALSE]
stop_if(ncol(df) < 2, stop_if(ncol(df) < 2,
"data set must contain at least two variables", "data set must contain at least two variables",
call = -2 call = -2
) )
if (message_not_thrown_before("mean_amr_distance", "groups")) { if (message_not_thrown_before("mean_amr_distance", "groups")) {
message_("Calculating mean AMR distance based on columns ", vector_and(colnames(df), sort = FALSE)) message_("Calculating mean AMR distance based on columns ", vector_and(colnames(df)))
} }
res <- vapply( res <- vapply(
FUN.VALUE = double(nrow(df)), FUN.VALUE = double(nrow(df)),
df, df,
@ -166,7 +149,7 @@ mean_amr_distance.data.frame <- function(x, ..., combine_SI = TRUE) {
} }
} }
res <- rowMeans(res, na.rm = TRUE) res <- rowMeans(res, na.rm = TRUE)
res[is.infinite(res) | is.nan(res)] <- 0 res[is.infinite(res)] <- 0
res res
} }

View File

@ -274,7 +274,7 @@ resistance_predict <- function(x,
df_prediction$value <- ifelse(df_prediction$value > 1, 1, pmax(df_prediction$value, 0)) df_prediction$value <- ifelse(df_prediction$value > 1, 1, pmax(df_prediction$value, 0))
df_prediction <- df_prediction[order(df_prediction$year), , drop = FALSE] df_prediction <- df_prediction[order(df_prediction$year), , drop = FALSE]
out <- as_original_data_class(df_prediction, class(x.bak)) # will remove tibble groups out <- as_original_data_class(df_prediction, class(x.bak))
structure(out, structure(out,
class = c("resistance_predict", class(out)), class = c("resistance_predict", class(out)),
I_as_S = I_as_S, I_as_S = I_as_S,

View File

@ -371,6 +371,6 @@ rsi_calc_df <- function(type, # "proportion", "count" or "both"
} }
rownames(out) <- NULL rownames(out) <- NULL
out <- as_original_data_class(out, class(data.bak)) # will remove tibble groups out <- as_original_data_class(out, class(data.bak))
structure(out, class = c("rsi_df", class(out))) structure(out, class = c("rsi_df", class(out)))
} }

Binary file not shown.

View File

@ -486,16 +486,14 @@ suppressMessages(devtools::document(quiet = TRUE))
# Style pkg --------------------------------------------------------------- # Style pkg ---------------------------------------------------------------
if (!"styler" %in% rownames(utils::installed.packages())) { # if (interactive()) {
message("Package 'styler' not installed!")
} else if (interactive()) {
# # only when sourcing this file ourselves # # only when sourcing this file ourselves
# usethis::ui_info("Styling package") # usethis::ui_info("Styling package")
# styler::style_pkg( # styler::style_pkg(
# style = styler::tidyverse_style, # style = styler::tidyverse_style,
# filetype = c("R", "Rmd") # filetype = c("R", "Rmd")
# ) # )
} # }
# Finished ---------------------------------------------------------------- # Finished ----------------------------------------------------------------

View File

@ -62,7 +62,7 @@ set_ab_names(
\item{tolower}{a \link{logical} to indicate whether the first \link{character} of every output should be transformed to a lower case \link{character}. This will lead to e.g. "polymyxin B" and not "polymyxin b".} \item{tolower}{a \link{logical} to indicate whether the first \link{character} of every output should be transformed to a lower case \link{character}. This will lead to e.g. "polymyxin B" and not "polymyxin b".}
\item{...}{in case of \code{\link[=set_ab_names]{set_ab_names()}} and \code{data} is a \link{data.frame}: columns to select (supports tidy selection such as \code{column1:column4}), otherwise other arguments passed on to \code{\link[=as.ab]{as.ab()}}} \item{...}{in case of \code{\link[=set_ab_names]{set_ab_names()}} and \code{data} is a \link{data.frame}: variables to select (supports tidy selection such as \code{column1:column4}), otherwise other arguments passed on to \code{\link[=as.ab]{as.ab()}}}
\item{only_first}{a \link{logical} to indicate whether only the first ATC code must be returned, with giving preference to J0-codes (i.e., the antimicrobial drug group)} \item{only_first}{a \link{logical} to indicate whether only the first ATC code must be returned, with giving preference to J0-codes (i.e., the antimicrobial drug group)}

View File

@ -60,7 +60,7 @@ eucast_rules(df, rules = "custom", custom_rules = x, info = FALSE)
\subsection{Using taxonomic properties in rules}{ \subsection{Using taxonomic properties in rules}{
There is one exception in columns used for the rules: all column names of the \link{microorganisms} data set can also be used, but do not have to exist in the data set. These column names are: "mo", "fullname", "status", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "source", "lpsn", "lpsn_parent", "lpsn_renamed_to", "gbif", "gbif_parent", "gbif_renamed_to", "prevalence" and "snomed". Thus, this next example will work as well, despite the fact that the \code{df} data set does not contain a column \code{genus}: There is one exception in variables used for the rules: all column names of the \link{microorganisms} data set can also be used, but do not have to exist in the data set. These column names are: "mo", "fullname", "status", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "source", "lpsn", "lpsn_parent", "lpsn_renamed_to", "gbif", "gbif_parent", "gbif_renamed_to", "prevalence" and "snomed". Thus, this next example will work as well, despite the fact that the \code{df} data set does not contain a column \code{genus}:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{y <- custom_eucast_rules(TZP == "S" & genus == "Klebsiella" ~ aminopenicillins == "S", \if{html}{\out{<div class="sourceCode r">}}\preformatted{y <- custom_eucast_rules(TZP == "S" & genus == "Klebsiella" ~ aminopenicillins == "S",
TZP == "R" & genus == "Klebsiella" ~ aminopenicillins == "R") TZP == "R" & genus == "Klebsiella" ~ aminopenicillins == "R")

View File

@ -16,7 +16,7 @@ mean_amr_distance(x, ...)
amr_distance_from_row(amr_distance, row) amr_distance_from_row(amr_distance, row)
} }
\arguments{ \arguments{
\item{x}{a vector of class \link[=as.rsi]{rsi}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes} \item{x}{a vector of class \link[=as.rsi]{rsi}, \link[=as.rsi]{rsi} or \link[=as.rsi]{rsi}, or a \link{data.frame} containing columns of any of these classes}
\item{...}{variables to select (supports \link[tidyselect:language]{tidyselect language} such as \code{column1:column4} and \code{where(is.mic)}, and can thus also be \link[=ab_selector]{antibiotic selectors}} \item{...}{variables to select (supports \link[tidyselect:language]{tidyselect language} such as \code{column1:column4} and \code{where(is.mic)}, and can thus also be \link[=ab_selector]{antibiotic selectors}}
@ -30,13 +30,13 @@ amr_distance_from_row(amr_distance, row)
Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand. Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand.
} }
\details{ \details{
The mean AMR distance is effectively \href{https://en.wikipedia.org/wiki/Standard_score}{the Z-score}; a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand. The mean AMR distance is a normalised numeric value to compare AMR test results and can help to identify similar isolates, without comparing antibiograms by hand. For common numeric data this distance is equal to \href{https://en.wikipedia.org/wiki/Standard_score}{Z scores} (the number of standard deviations from the mean).
MIC values (see \code{\link[=as.mic]{as.mic()}}) are transformed with \code{\link[=log2]{log2()}} first; their distance is thus calculated as \code{(log2(x) - mean(log2(x))) / sd(log2(x))}. MIC values (see \code{\link[=as.mic]{as.mic()}}) are transformed with \code{\link[=log2]{log2()}} first; their distance is calculated as \code{(log2(x) - mean(log2(x))) / sd(log2(x))}.
R/SI values (see \code{\link[=as.rsi]{as.rsi()}}) are transformed using \code{"S"} = 1, \code{"I"} = 2, and \code{"R"} = 3. If \code{combine_SI} is \code{TRUE} (default), the \code{"I"} will be considered to be 1. R/SI values (see \code{\link[=as.rsi]{as.rsi()}}) are transformed using \code{"S"} = 1, \code{"I"} = 2, and \code{"R"} = 3. If \code{combine_SI} is \code{TRUE} (default), the \code{"I"} will be considered to be 1.
For data sets, the mean AMR distance will be calculated per column, after which the mean per row will be returned, see \emph{Examples}. For data sets, the mean AMR distance will be calculated per variable, after which the mean of all columns will returned per row (using \code{\link[=rowMeans]{rowMeans()}}), see \emph{Examples}.
Use \code{\link[=amr_distance_from_row]{amr_distance_from_row()}} to subtract distances from the distance of one row, see \emph{Examples}. Use \code{\link[=amr_distance_from_row]{amr_distance_from_row()}} to subtract distances from the distance of one row, see \emph{Examples}.
} }
@ -46,24 +46,14 @@ Isolates with distances less than 0.01 difference from each other should be cons
} }
\examples{ \examples{
rsi <- random_rsi(10) x <- random_mic(10)
rsi x
mean_amr_distance(rsi) mean_amr_distance(x)
mic <- random_mic(10)
mic
mean_amr_distance(mic)
# equal to the Z-score of their log2:
(log2(mic) - mean(log2(mic))) / sd(log2(mic))
disk <- random_disk(10)
disk
mean_amr_distance(disk)
y <- data.frame( y <- data.frame(
id = LETTERS[1:10], id = LETTERS[1:10],
amox = random_rsi(10, ab = "amox", mo = "Escherichia coli"), amox = random_mic(10, ab = "amox", mo = "Escherichia coli"),
cipr = random_disk(10, ab = "cipr", mo = "Escherichia coli"), cipr = random_mic(10, ab = "cipr", mo = "Escherichia coli"),
gent = random_mic(10, ab = "gent", mo = "Escherichia coli"), gent = random_mic(10, ab = "gent", mo = "Escherichia coli"),
tobr = random_mic(10, ab = "tobr", mo = "Escherichia coli") tobr = random_mic(10, ab = "tobr", mo = "Escherichia coli")
) )
@ -75,7 +65,7 @@ y[order(y$amr_distance), ]
if (require("dplyr")) { if (require("dplyr")) {
y \%>\% y \%>\%
mutate( mutate(
amr_distance = mean_amr_distance(y), amr_distance = mean_amr_distance(., where(is.mic)),
check_id_C = amr_distance_from_row(amr_distance, id == "C") check_id_C = amr_distance_from_row(amr_distance, id == "C")
) \%>\% ) \%>\%
arrange(check_id_C) arrange(check_id_C)
@ -86,7 +76,7 @@ if (require("dplyr")) {
filter(mo_genus() == "Enterococcus" & mo_species() != "") \%>\% filter(mo_genus() == "Enterococcus" & mo_species() != "") \%>\%
select(mo, TCY, carbapenems()) \%>\% select(mo, TCY, carbapenems()) \%>\%
group_by(mo) \%>\% group_by(mo) \%>\%
mutate(dist = mean_amr_distance(.)) \%>\% mutate(d = mean_amr_distance(., where(is.rsi))) \%>\%
arrange(mo, dist) arrange(mo, d)
} }
} }