1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-26 18:06:11 +01:00

Compare commits

..

2 Commits

20 changed files with 554 additions and 333 deletions

View File

@ -46,6 +46,7 @@ jobs:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
with: with:
# this is to keep timestamps, the default fetch-depth: 1 gets the timestamps of the moment of cloning # this is to keep timestamps, the default fetch-depth: 1 gets the timestamps of the moment of cloning
# we need this for the download page on our website - dates must be of the files, not of the latest git push
fetch-depth: 0 fetch-depth: 0
- name: Preserve timestamps - name: Preserve timestamps
@ -69,7 +70,6 @@ jobs:
extra-packages: | extra-packages: |
any::pkgdown any::pkgdown
any::tidymodels any::tidymodels
any::data.table
# Send updates to repo using GH Actions bot # Send updates to repo using GH Actions bot
- name: Create website in separate branch - name: Create website in separate branch

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 2.1.1.9117 Version: 2.1.1.9118
Date: 2024-12-13 Date: 2024-12-14
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,4 +1,4 @@
# AMR 2.1.1.9117 # AMR 2.1.1.9118
*(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)* *(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)*

View File

@ -1,9 +1,9 @@
Metadata-Version: 2.1 Metadata-Version: 2.1
Name: AMR Name: AMR
Version: 2.1.1.9117 Version: 2.1.1.9118
Summary: A Python wrapper for the AMR R package Summary: A Python wrapper for the AMR R package
Home-page: https://github.com/msberends/AMR Home-page: https://github.com/msberends/AMR
Author: Dr. Matthijs Berends Author: Matthijs Berends
Author-email: m.s.berends@umcg.nl Author-email: m.s.berends@umcg.nl
License: GPL 2 License: GPL 2
Project-URL: Bug Tracker, https://github.com/msberends/AMR/issues Project-URL: Bug Tracker, https://github.com/msberends/AMR/issues

View File

@ -117,8 +117,6 @@ from .functions import is_new_episode
from .functions import ggplot_pca from .functions import ggplot_pca
from .functions import ggplot_sir from .functions import ggplot_sir
from .functions import geom_sir from .functions import geom_sir
from .functions import theme_sir
from .functions import labels_sir_count
from .functions import guess_ab_col from .functions import guess_ab_col
from .functions import italicise_taxonomy from .functions import italicise_taxonomy
from .functions import italicize_taxonomy from .functions import italicize_taxonomy
@ -181,6 +179,8 @@ from .functions import mo_info
from .functions import mo_url from .functions import mo_url
from .functions import mo_property from .functions import mo_property
from .functions import pca from .functions import pca
from .functions import theme_sir
from .functions import labels_sir_count
from .functions import resistance from .functions import resistance
from .functions import susceptibility from .functions import susceptibility
from .functions import sir_confidence_interval from .functions import sir_confidence_interval

View File

@ -381,12 +381,6 @@ def ggplot_sir(*args, **kwargs):
def geom_sir(*args, **kwargs): def geom_sir(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.geom_sir(*args, **kwargs)) return convert_to_python(amr_r.geom_sir(*args, **kwargs))
def theme_sir(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.theme_sir(*args, **kwargs))
def labels_sir_count(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.labels_sir_count(*args, **kwargs))
def guess_ab_col(*args, **kwargs): def guess_ab_col(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.guess_ab_col(*args, **kwargs)) return convert_to_python(amr_r.guess_ab_col(*args, **kwargs))
@ -573,6 +567,12 @@ def mo_property(*args, **kwargs):
def pca(*args, **kwargs): def pca(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.pca(*args, **kwargs)) return convert_to_python(amr_r.pca(*args, **kwargs))
def theme_sir(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.theme_sir(*args, **kwargs))
def labels_sir_count(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.labels_sir_count(*args, **kwargs))
def resistance(*args, **kwargs): def resistance(*args, **kwargs):
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
return convert_to_python(amr_r.resistance(*args, **kwargs)) return convert_to_python(amr_r.resistance(*args, **kwargs))

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -2,14 +2,14 @@ from setuptools import setup, find_packages
setup( setup(
name='AMR', name='AMR',
version='2.1.1.9117', version='2.1.1.9118',
packages=find_packages(), packages=find_packages(),
install_requires=[ install_requires=[
'rpy2', 'rpy2',
'numpy', 'numpy',
'pandas', 'pandas',
], ],
author='Dr. Matthijs Berends', author='Matthijs Berends',
author_email='m.s.berends@umcg.nl', author_email='m.s.berends@umcg.nl',
description='A Python wrapper for the AMR R package', description='A Python wrapper for the AMR R package',
long_description=open('README.md').read(), long_description=open('README.md').read(),

View File

@ -52,18 +52,15 @@
#' @param ... other arguments passed on to [geom_sir()] or, in case of [scale_sir_colours()], named values to set colours. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. See *Examples*. #' @param ... other arguments passed on to [geom_sir()] or, in case of [scale_sir_colours()], named values to set colours. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. See *Examples*.
#' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` argument. See [count_df()]. #' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` argument. See [count_df()].
#' #'
#' ### The Functions
#' [geom_sir()] will take any variable from the data that has an [`sir`] class (created with [as.sir()]) using [sir_df()] and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. #' [geom_sir()] will take any variable from the data that has an [`sir`] class (created with [as.sir()]) using [sir_df()] and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
#' #'
#' [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()]. #' Additional functions include:
#' #'
#' [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()]. #' * [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()].
#' #' * [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()].
#' [scale_sir_colours()] sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. #' * [scale_sir_colours()] sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
#' #' * [theme_sir()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction.
#' [theme_sir()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction. #' * [labels_sir_count()] print datalabels on the bars with percentage and amount of isolates using [ggplot2::geom_text()].
#'
#' [labels_sir_count()] print datalabels on the bars with percentage and amount of isolates using [ggplot2::geom_text()].
#' #'
#' [ggplot_sir()] is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (`%>%`). See *Examples*. #' [ggplot_sir()] is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (`%>%`). See *Examples*.
#' @rdname ggplot_sir #' @rdname ggplot_sir
@ -344,187 +341,3 @@ geom_sir <- function(position = NULL,
... ...
) )
} }
#' @rdname ggplot_sir
#' @export
facet_sir <- function(facet = c("interpretation", "antibiotic"), nrow = NULL) {
facet <- facet[1]
stop_ifnot_installed("ggplot2")
meet_criteria(facet, allow_class = "character", has_length = 1)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
# we work with aes_string later on
facet_deparse <- deparse(substitute(facet))
if (facet_deparse != "facet") {
facet <- facet_deparse
}
if (facet %like% '".*"') {
facet <- substr(facet, 2, nchar(facet) - 1)
}
if (tolower(facet) %in% tolower(c("SIR", "sir", "interpretations", "result"))) {
facet <- "interpretation"
} else if (tolower(facet) %in% tolower(c("ab", "abx", "antibiotics"))) {
facet <- "antibiotic"
}
ggplot2::facet_wrap(facets = facet, scales = "free_x", nrow = nrow)
}
#' @rdname ggplot_sir
#' @export
scale_y_percent <- function(breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1), limits = NULL) {
stop_ifnot_installed("ggplot2")
meet_criteria(breaks, allow_class = c("numeric", "integer", "function"))
meet_criteria(limits, allow_class = c("numeric", "integer"), has_length = 2, allow_NULL = TRUE, allow_NA = TRUE)
if (!is.function(breaks) && all(breaks[breaks != 0] > 1)) {
breaks <- breaks / 100
}
ggplot2::scale_y_continuous(
breaks = breaks,
labels = if (is.function(breaks)) function(x) percentage(breaks(x)) else percentage(breaks),
limits = limits
)
}
#' @rdname ggplot_sir
#' @export
scale_sir_colours <- function(...,
aesthetics = "fill") {
stop_ifnot_installed("ggplot2")
meet_criteria(aesthetics, allow_class = "character", is_in = c("alpha", "colour", "color", "fill", "linetype", "shape", "size"))
# behaviour until AMR pkg v1.5.0 and also when coming from ggplot_sir()
if ("colours" %in% names(list(...))) {
original_cols <- c(
S = "#3CAEA3",
SI = "#3CAEA3",
I = "#F6D55C",
IR = "#ED553B",
R = "#ED553B"
)
colours <- replace(original_cols, names(list(...)$colours), list(...)$colours)
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
return(ggplot2::scale_fill_manual(values = colours, limits = force))
}
if (identical(unlist(list(...)), FALSE)) {
return(invisible())
}
names_susceptible <- c(
"S", "SI", "IS", "S+I", "I+S", "susceptible", "Susceptible",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible"),
"replacement",
drop = TRUE
])
)
names_incr_exposure <- c(
"I", "intermediate", "increased exposure", "incr. exposure",
"Increased exposure", "Incr. exposure", "Susceptible, incr. exp.",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Intermediate"),
"replacement",
drop = TRUE
]),
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible, incr. exp."),
"replacement",
drop = TRUE
])
)
names_resistant <- c(
"R", "IR", "RI", "R+I", "I+R", "resistant", "Resistant",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Resistant"),
"replacement",
drop = TRUE
])
)
susceptible <- rep("#3CAEA3", length(names_susceptible))
names(susceptible) <- names_susceptible
incr_exposure <- rep("#F6D55C", length(names_incr_exposure))
names(incr_exposure) <- names_incr_exposure
resistant <- rep("#ED553B", length(names_resistant))
names(resistant) <- names_resistant
original_cols <- c(susceptible, incr_exposure, resistant)
dots <- c(...)
# replace S, I, R as colours: scale_sir_colours(mydatavalue = "S")
dots[dots == "S"] <- "#3CAEA3"
dots[dots == "I"] <- "#F6D55C"
dots[dots == "R"] <- "#ED553B"
cols <- replace(original_cols, names(dots), dots)
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
ggplot2::scale_discrete_manual(aesthetics = aesthetics, values = cols, limits = force)
}
#' @rdname ggplot_sir
#' @export
theme_sir <- function() {
stop_ifnot_installed("ggplot2")
ggplot2::theme_minimal(base_size = 10) +
ggplot2::theme(
panel.grid.major.x = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major.y = ggplot2::element_line(colour = "grey75"),
# center title and subtitle
plot.title = ggplot2::element_text(hjust = 0.5),
plot.subtitle = ggplot2::element_text(hjust = 0.5)
)
}
#' @rdname ggplot_sir
#' @export
labels_sir_count <- function(position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15") {
stop_ifnot_installed("ggplot2")
meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE)
meet_criteria(x, allow_class = "character", has_length = 1)
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
language <- validate_language(language)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(datalabels.colour, allow_class = "character", has_length = 1)
if (is.null(position)) {
position <- "fill"
}
if (identical(position, "fill")) {
position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE)
}
x_name <- x
ggplot2::geom_text(
mapping = ggplot2::aes_string(
label = "lbl",
x = x,
y = "value"
),
position = position,
inherit.aes = FALSE,
size = datalabels.size,
colour = datalabels.colour,
lineheight = 0.75,
data = function(x) {
transformed <- sir_df(
data = x,
translate_ab = translate_ab,
combine_SI = combine_SI,
minimum = minimum,
language = language
)
transformed$gr <- transformed[, x_name, drop = TRUE]
transformed %pm>%
pm_group_by(gr) %pm>%
pm_mutate(lbl = paste0("n=", isolates)) %pm>%
pm_ungroup() %pm>%
pm_select(-gr)
}
)
}

217
R/mdro.R
View File

@ -29,7 +29,7 @@
#' Determine Multidrug-Resistant Organisms (MDRO) #' Determine Multidrug-Resistant Organisms (MDRO)
#' #'
#' Determine which isolates are multidrug-resistant organisms (MDRO) according to international, national and custom guidelines. #' Determine which isolates are multidrug-resistant organisms (MDRO) according to international, national, or custom guidelines.
#' @param x a [data.frame] with antibiotics columns, like `AMX` or `amox`. Can be left blank for automatic determination. #' @param x a [data.frame] with antibiotics columns, like `AMX` or `amox`. Can be left blank for automatic determination.
#' @param guideline a specific guideline to follow, see sections *Supported international / national guidelines* and *Using Custom Guidelines* below. When left empty, the publication by Magiorakos *et al.* (see below) will be followed. #' @param guideline a specific guideline to follow, see sections *Supported international / national guidelines* and *Using Custom Guidelines* below. When left empty, the publication by Magiorakos *et al.* (see below) will be followed.
#' @param ... in case of [custom_mdro_guideline()]: a set of rules, see section *Using Custom Guidelines* below. Otherwise: column name of an antibiotic, see section *Antibiotics* below. #' @param ... in case of [custom_mdro_guideline()]: a set of rules, see section *Using Custom Guidelines* below. Otherwise: column name of an antibiotic, see section *Antibiotics* below.
@ -76,9 +76,15 @@
#' #'
#' * `guideline = "BRMO"` #' * `guideline = "BRMO"`
#' #'
#' The Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu "WIP-richtlijn BRMO (Bijzonder Resistente Micro-Organismen) (ZKH)" ([link](https://www.rivm.nl/wip-richtlijn-brmo-bijzonder-resistente-micro-organismen-zkh)) #' The Dutch national guideline - Samenwerkingverband Richtlijnen Infectiepreventie (SRI) (2024) "Bijzonder Resistente Micro-Organismen (BRMO)" ([link](https://www.sri-richtlijnen.nl/brmo))
#' #'
#' Please suggest your own (country-specific) guidelines by letting us know: <https://github.com/msberends/AMR/issues/new>. #' Also:
#'
#' * `guideline = "BRMO 2017"`
#'
#' The former Dutch national guideline - Werkgroep Infectiepreventie (WIP), RIVM, last revision as of 2017: "Bijzonder Resistente Micro-Organismen (BRMO)"
#'
#' Please suggest to implement guidelines by letting us know: <https://github.com/msberends/AMR/issues/new>.
#' #'
#' @section Using Custom Guidelines: #' @section Using Custom Guidelines:
#' #'
@ -333,7 +339,7 @@ mdro <- function(x = NULL,
if (guideline$code == "cmi2012") { if (guideline$code == "cmi2012") {
guideline$name <- "Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance." guideline$name <- "Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance."
guideline$author <- "Magiorakos AP, Srinivasan A, Carey RB, ..., Vatopoulos A, Weber JT, Monnet DL" guideline$author <- "Magiorakos AP, Srinivasan A, Carey RB, ..., Vatopoulos A, Weber JT, Monnet DL"
guideline$version <- NA guideline$version <- NA_character_
guideline$source_url <- paste0("Clinical Microbiology and Infection 18:3, 2012; ", font_url("https://doi.org/10.1111/j.1469-0691.2011.03570.x", "doi: 10.1111/j.1469-0691.2011.03570.x")) guideline$source_url <- paste0("Clinical Microbiology and Infection 18:3, 2012; ", font_url("https://doi.org/10.1111/j.1469-0691.2011.03570.x", "doi: 10.1111/j.1469-0691.2011.03570.x"))
guideline$type <- "MDRs/XDRs/PDRs" guideline$type <- "MDRs/XDRs/PDRs"
} else if (guideline$code == "eucast3.1") { } else if (guideline$code == "eucast3.1") {
@ -365,14 +371,21 @@ mdro <- function(x = NULL,
} else if (guideline$code == "mrgn") { } else if (guideline$code == "mrgn") {
guideline$name <- "Cross-border comparison of the Dutch and German guidelines on multidrug-resistant Gram-negative microorganisms" guideline$name <- "Cross-border comparison of the Dutch and German guidelines on multidrug-resistant Gram-negative microorganisms"
guideline$author <- "M\u00fcller J, Voss A, K\u00f6ck R, ..., Kern WV, Wendt C, Friedrich AW" guideline$author <- "M\u00fcller J, Voss A, K\u00f6ck R, ..., Kern WV, Wendt C, Friedrich AW"
guideline$version <- NA guideline$version <- NA_character_
guideline$source_url <- paste0("Antimicrobial Resistance and Infection Control 4:7, 2015; ", font_url("https://doi.org/10.1186/s13756-015-0047-6", "doi: 10.1186/s13756-015-0047-6")) guideline$source_url <- paste0("Antimicrobial Resistance and Infection Control 4:7, 2015; ", font_url("https://doi.org/10.1186/s13756-015-0047-6", "doi: 10.1186/s13756-015-0047-6"))
guideline$type <- "MRGNs" guideline$type <- "MRGNs"
} else if (guideline$code == "brmo") { } else if (guideline$code == "brmo") {
combine_SI <- TRUE # I must not be considered resistant
guideline$name <- "Bijzonder Resistente Micro-organismen (BRMO)"
guideline$author <- "Samenwerkingsverband Richtlijnen Infectiepreventie (SRI)"
guideline$version <- "November 2024"
guideline$source_url <- font_url("https://www.sri-richtlijnen.nl/brmo", "Direct link")
guideline$type <- "BRMOs"
} else if (guideline$code == "brmo2017") {
guideline$name <- "WIP-Richtlijn Bijzonder Resistente Micro-organismen (BRMO)" guideline$name <- "WIP-Richtlijn Bijzonder Resistente Micro-organismen (BRMO)"
guideline$author <- "RIVM (Rijksinstituut voor de Volksgezondheid)" guideline$author <- "RIVM (Rijksinstituut voor de Volksgezondheid)"
guideline$version <- "Revision as of December 2017" guideline$version <- "Last revision (December 2017) - since 2024 superseded by SRI guideline"
guideline$source_url <- font_url("https://www.rivm.nl/Documenten_en_publicaties/Professioneel_Praktisch/Richtlijnen/Infectieziekten/WIP_Richtlijnen/WIP_Richtlijnen/Ziekenhuizen/WIP_richtlijn_BRMO_Bijzonder_Resistente_Micro_Organismen_ZKH", "Direct download") guideline$source_url <- NA_character_
guideline$type <- "BRMOs" guideline$type <- "BRMOs"
} else { } else {
stop("This guideline is currently unsupported: ", guideline$code, call. = FALSE) stop("This guideline is currently unsupported: ", guideline$code, call. = FALSE)
@ -429,6 +442,17 @@ mdro <- function(x = NULL,
fn = "mdro", fn = "mdro",
... ...
) )
} else if (guideline$code == "brmo") {
# Dutch 2024 guideline
cols_ab <- get_column_abx(
x = x,
soft_dependencies = c("SXT", "GEN", "TOB", "AMK", "IPM", "MEM", "CIP", "LVX", "NOR", "PIP", "CAZ", "VAN", "PEN", "AMX", "AMP", "FLC", "OXA", "FOX", "FOX1"),
verbose = verbose,
info = info,
only_sir_columns = only_sir_columns,
fn = "mdro",
...
)
} else if (guideline$code == "mrgn") { } else if (guideline$code == "mrgn") {
cols_ab <- get_column_abx( cols_ab <- get_column_abx(
x = x, x = x,
@ -524,6 +548,7 @@ mdro <- function(x = NULL,
FLE <- cols_ab["FLE"] FLE <- cols_ab["FLE"]
FOS <- cols_ab["FOS"] FOS <- cols_ab["FOS"]
FOX <- cols_ab["FOX"] FOX <- cols_ab["FOX"]
FOX1 <- cols_ab["FOX1"]
FUS <- cols_ab["FUS"] FUS <- cols_ab["FUS"]
GAT <- cols_ab["GAT"] GAT <- cols_ab["GAT"]
GEH <- cols_ab["GEH"] GEH <- cols_ab["GEH"]
@ -651,7 +676,7 @@ mdro <- function(x = NULL,
# nolint end # nolint end
# helper function for editing the table # helper function for editing the table
trans_tbl <- function(to, rows, cols, any_all) { trans_tbl <- function(to, rows, cols, any_all, reason = NULL) {
cols <- cols[!ab_missing(cols)] cols <- cols[!ab_missing(cols)]
cols <- cols[!is.na(cols)] cols <- cols[!is.na(cols)]
if (length(rows) > 0 && length(cols) > 0) { if (length(rows) > 0 && length(cols) > 0) {
@ -696,14 +721,18 @@ mdro <- function(x = NULL,
) )
rows_affected <- x[which(rows_affected), "row_number", drop = TRUE] rows_affected <- x[which(rows_affected), "row_number", drop = TRUE]
rows_to_change <- rows[rows %in% rows_affected] rows_to_change <- rows[rows %in% rows_affected]
x[rows_to_change, "MDRO"] <<- to rows_not_to_change <- rows[!rows %in% c(rows_affected, rows_to_change)]
x[rows_to_change, "reason"] <<- paste0( rows_not_to_change <- rows_not_to_change[is.na(x[rows_not_to_change, "reason"])]
any_all, if (is.null(reason)) {
reason <- paste0(any_all,
" of the required antibiotics ", " of the required antibiotics ",
ifelse(any_all == "any", "is", "are"), ifelse(any_all == "any", "is", "are"),
" R", " R",
ifelse(!isTRUE(combine_SI), " or I", "") ifelse(!isTRUE(combine_SI), " or I", ""))
) }
x[rows_to_change, "MDRO"] <<- to
x[rows_to_change, "reason"] <<- reason
x[rows_not_to_change, "reason"] <<- "guideline criteria not met"
} }
} }
@ -784,7 +813,7 @@ mdro <- function(x = NULL,
x <- left_join_microorganisms(x, by = col_mo) x <- left_join_microorganisms(x, by = col_mo)
x$MDRO <- ifelse(!is.na(x$genus), 1, NA_integer_) x$MDRO <- ifelse(!is.na(x$genus), 1, NA_integer_)
x$row_number <- seq_len(nrow(x)) x$row_number <- seq_len(nrow(x))
x$reason <- paste0("not covered by ", toupper(guideline$code), " guideline") x$reason <- NA_character_
x$columns_nonsusceptible <- "" x$columns_nonsusceptible <- ""
if (guideline$code == "cmi2012") { if (guideline$code == "cmi2012") {
@ -1402,7 +1431,147 @@ mdro <- function(x = NULL,
} }
if (guideline$code == "brmo") { if (guideline$code == "brmo") {
# Netherlands ------------------------------------------------------------- # Netherlands 2024 --------------------------------------------------------
aminoglycosides <- c(GEN, TOB, AMK) # note 4: gentamicin or tobramycin or amikacin
aminoglycosides_serratia_marcescens <- GEN # note 4: TOB and AMK do not count towards S. marcescens
fluoroquinolones <- c(CIP, NOR, LVX) # note 5: ciprofloxacin or norfloxacin or levofloxacin
carbapenems <- carbapenems[!is.na(carbapenems)]
carbapenems_without_imipenem <- carbapenems[carbapenems != IPM]
amino <- AMX %or% AMP
third <- CAZ %or% CTX
ESBLs <- c(amino, third)
ESBLs <- ESBLs[!is.na(ESBLs)]
if (length(ESBLs) != 2) {
ESBLs <- character(0)
}
# Enterobacterales
if (length(ESBLs) > 0) {
trans_tbl(
2, # positive, unconfirmed
which(x$order == "Enterobacterales" & x[[ESBLs[1]]] == "R" & x[[ESBLs[2]]] == "R"),
c(AMX %or% AMP, cephalosporins_3rd),
"all",
reason = "Enterobacterales: ESBL"
)
}
trans_tbl(
3, # positive
which(x$order == "Enterobacterales" & (x$genus %in% c("Proteus", "Providencia") | paste(x$genus, x$species) %in% c("Serratia marcescens", "Morganella morganii"))),
carbapenems_without_imipenem,
"any",
reason = "Enterobacterales: carbapenem or carbapenemase"
)
trans_tbl(
3,
which(x$order == "Enterobacterales" & !(x$genus %in% c("Proteus", "Providencia") | paste(x$genus, x$species) %in% c("Serratia marcescens", "Morganella morganii"))),
carbapenems,
"any",
reason = "Enterobacterales: carbapenem or carbapenemase"
)
trans_tbl(
3,
which(x[[SXT]] == "R" &
(x[[GEN]] == "R" | x[[TOB]] == "R" | x[[AMK]] == "R") &
(x[[CIP]] == "R" | x[[NOR]] == "R" | x[[LVX]] == "R") &
(x$genus %in% c("Enterobacter", "Providencia") | paste(x$genus, x$species) %in% c("Citrobacter freundii", "Klebsiella aerogenes", "Hafnia alvei", "Morganella morganii"))),
c(SXT, aminoglycosides, fluoroquinolones),
"any",
reason = "Enterobacterales group II: aminoglycoside + fluoroquinolone + cotrimoxazol"
)
trans_tbl(
3,
which(x[[SXT]] == "R" &
x[[GEN]] == "R" &
(x[[CIP]] == "R" | x[[NOR]] == "R" | x[[LVX]] == "R") &
paste(x$genus, x$species) == "Serratia marcescens"),
c(SXT, aminoglycosides_serratia_marcescens, fluoroquinolones),
"any",
reason = "Enterobacterales group II: aminoglycoside + fluoroquinolone + cotrimoxazol"
)
# Acinetobacter baumannii-calcoaceticus complex
trans_tbl(
3,
which((x[[GEN]] == "R" | x[[TOB]] == "R" | x[[AMK]] == "R") &
(x[[CIP]] == "R" | x[[LVX]] == "R") &
x[[col_mo]] %in% AMR::microorganisms.groups$mo[AMR::microorganisms.groups$mo_group_name == "Acinetobacter baumannii complex"]),
c(aminoglycosides, CIP, LVX),
"any",
reason = "A. baumannii-calcoaceticus complex: aminoglycoside + ciprofloxacin or levofloxacin"
)
trans_tbl(
2, # unconfirmed
which(x[[col_mo]] %in% AMR::microorganisms.groups$mo[AMR::microorganisms.groups$mo_group_name == "Acinetobacter baumannii complex"]),
carbapenems,
"any",
reason = "A. baumannii-calcoaceticus complex: carbapenemase"
)
# Pseudomonas aeruginosa
if (ab_missing(PIP) && !ab_missing(TZP)) {
# take pip/tazo if just pip is not available - many labs only test for pip/tazo because of availability on a Vitek card
PIP <- TZP
}
if (!ab_missing(MEM) && !ab_missing(IPM) &&
!ab_missing(GEN) && !ab_missing(TOB) &&
!ab_missing(CIP) &&
!ab_missing(CAZ) &&
!ab_missing(PIP)) {
x$psae <- 0
x[which(x[, MEM, drop = TRUE] == "R" | x[, IPM, drop = TRUE] == "R"), "psae"] <- 1 + x[which(x[, MEM, drop = TRUE] == "R" | x[, IPM, drop = TRUE] == "R"), "psae"]
x[which(x[, GEN, drop = TRUE] == "R" & x[, TOB, drop = TRUE] == "R"), "psae"] <- 1 + x[which(x[, GEN, drop = TRUE] == "R" & x[, TOB, drop = TRUE] == "R"), "psae"]
x[which(x[, CIP, drop = TRUE] == "R"), "psae"] <- 1 + x[which(x[, CIP, drop = TRUE] == "R"), "psae"]
x[which(x[, CAZ, drop = TRUE] == "R"), "psae"] <- 1 + x[which(x[, CAZ, drop = TRUE] == "R"), "psae"]
x[which(x[, PIP, drop = TRUE] == "R"), "psae"] <- 1 + x[which(x[, PIP, drop = TRUE] == "R"), "psae"]
} else {
x$psae <- 0
}
trans_tbl(
3,
which(x$genus == "Pseudomonas" & x$species == "aeruginosa"),
c(CAZ, CIP, GEN, IPM, MEM, TOB, PIP),
"all", # this will set all negatives to "guideline criteria not met" instead of "not covered by guideline"
reason = "P. aeruginosa: at least 3 classes contain R"
)
trans_tbl(
3,
which(x$genus == "Pseudomonas" & x$species == "aeruginosa" & x$psae >= 3),
c(CAZ, CIP, GEN, IPM, MEM, TOB, PIP),
"any", # this is the actual one, changing the ones with x$psae >= 3
reason = "P. aeruginosa: at least 3 classes contain R"
)
# Enterococcus faecium
trans_tbl(
3,
which(x$genus == "Enterococcus" & x$species == "faecium"),
c(PEN %or% AMX %or% AMP, VAN),
"all",
reason = "E. faecium: vancomycin or vanA/vanB gene + penicillin group"
)
# Staphylococcus aureus
trans_tbl(
2,
which(x$genus == "Staphylococcus" & x$species == "aureus"),
c(PEN, AMX, AMP, FLC, OXA, FOX, FOX1),
"any",
reason = "S. aureus: MRSA"
)
# Candida auris
trans_tbl(
3,
which(x$genus == "Candida" & x$species == "auris"),
character(0),
"any",
reason = "C. auris: regardless of resistance"
)
}
if (guideline$code == "brmo2017") {
# Netherlands 2017 --------------------------------------------------------
aminoglycosides <- aminoglycosides[!is.na(aminoglycosides)] aminoglycosides <- aminoglycosides[!is.na(aminoglycosides)]
fluoroquinolones <- fluoroquinolones[!is.na(fluoroquinolones)] fluoroquinolones <- fluoroquinolones[!is.na(fluoroquinolones)]
carbapenems <- carbapenems[!is.na(carbapenems)] carbapenems <- carbapenems[!is.na(carbapenems)]
@ -1477,10 +1646,7 @@ mdro <- function(x = NULL,
c(CAZ, CIP, GEN, IPM, MEM, TOB, TZP), c(CAZ, CIP, GEN, IPM, MEM, TOB, TZP),
"any" "any"
) )
x[which( x[which(x$genus == "Pseudomonas" & x$species == "aeruginosa" & x$psae >= 3), "reason"] <- paste0("at least 3 classes contain R", ifelse(!isTRUE(combine_SI), " or I", ""))
x$genus == "Pseudomonas" & x$species == "aeruginosa" &
x$psae >= 3
), "reason"] <- paste0("at least 3 classes contain R", ifelse(!isTRUE(combine_SI), " or I", ""))
# Table 3 # Table 3
trans_tbl( trans_tbl(
@ -1580,7 +1746,7 @@ mdro <- function(x = NULL,
" (3 required for MDR)" " (3 required for MDR)"
) )
} else { } else {
x[which(x$MDRO == 1), "reason"] <- "too few antibiotics are R" #x[which(x$MDRO == 1), "reason"] <- "too few antibiotics are R"
} }
} }
@ -1610,12 +1776,14 @@ mdro <- function(x = NULL,
if (isTRUE(info.bak)) { if (isTRUE(info.bak)) {
cat(font_italic(paste0(" (", length(rows_empty), " isolates had no test results)\n"))) cat(font_italic(paste0(" (", length(rows_empty), " isolates had no test results)\n")))
} }
x[rows_empty, "MDRO"] <- NA
x[rows_empty, "reason"] <- "none of the antibiotics have test results"
} else if (isTRUE(info.bak)) { } else if (isTRUE(info.bak)) {
cat("\n") cat("\n")
} }
if (isTRUE(info.bak) && !isTRUE(verbose)) {
cat("\nRerun with 'verbose = TRUE' to retrieve detailed info and reasons for every MDRO classification.\n")
}
# Results ---- # Results ----
if (guideline$code == "cmi2012") { if (guideline$code == "cmi2012") {
if (any(x$MDRO == -1, na.rm = TRUE)) { if (any(x$MDRO == -1, na.rm = TRUE)) {
@ -1663,7 +1831,12 @@ mdro <- function(x = NULL,
) )
} }
if (isTRUE(verbose)) { if (isTRUE(verbose)) {
# fill in empty reasons
x$reason[is.na(x$reason)] <- "not covered by guideline"
x[rows_empty, "reason"] <- paste(x[rows_empty, "reason"], "(note: no available test results)")
# format data set
colnames(x)[colnames(x) == col_mo] <- "microorganism" colnames(x)[colnames(x) == col_mo] <- "microorganism"
x$microorganism <- mo_name(x$microorganism, language = NULL) x$microorganism <- mo_name(x$microorganism, language = NULL)
x[, c( x[, c(

View File

@ -27,7 +27,7 @@
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
# ==================================================================== # # ==================================================================== #
#' Plotting for Classes `sir`, `mic` and `disk` #' Plotting Helpers for AMR Data Analysis
#' #'
#' @description #' @description
#' Functions to plot classes `sir`, `mic` and `disk`, with support for base \R and `ggplot2`. #' Functions to plot classes `sir`, `mic` and `disk`, with support for base \R and `ggplot2`.
@ -49,6 +49,16 @@
#' For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the `guideline` argument are: `r vector_and(AMR::clinical_breakpoints$guideline, quotes = TRUE, reverse = TRUE)`. #' For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the `guideline` argument are: `r vector_and(AMR::clinical_breakpoints$guideline, quotes = TRUE, reverse = TRUE)`.
#' #'
#' Simply using `"CLSI"` or `"EUCAST"` as input will automatically select the latest version of that guideline. #' Simply using `"CLSI"` or `"EUCAST"` as input will automatically select the latest version of that guideline.
#'
#' ### Additional `ggplot2` Functions
#'
#' This package contains several functions that extend the `ggplot2` package, to help in visualising AMR data results. All these functions are internally used by [ggplot_sir()] too.
#'
#' * [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()].
#' * [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()].
#' * [scale_sir_colours()] sets colours to the bars (green for S, yellow for I, and red for R). Has multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
#' * [theme_sir()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction.
#' * [labels_sir_count()] print datalabels on the bars with percentage and number of isolates, using [ggplot2::geom_text()].
#' @name plot #' @name plot
#' @rdname plot #' @rdname plot
#' @return The `autoplot()` functions return a [`ggplot`][ggplot2::ggplot()] model that is extendible with any `ggplot2` function. #' @return The `autoplot()` functions return a [`ggplot`][ggplot2::ggplot()] model that is extendible with any `ggplot2` function.
@ -915,3 +925,192 @@ plot_colours_subtitle_guideline <- function(x, mo, ab, guideline, colours_SIR, f
list(cols = cols, count = as.double(x), sub = sub, guideline = guideline) list(cols = cols, count = as.double(x), sub = sub, guideline = guideline)
} }
#' @rdname plot
#' @export
facet_sir <- function(facet = c("interpretation", "antibiotic"), nrow = NULL) {
facet <- facet[1]
stop_ifnot_installed("ggplot2")
meet_criteria(facet, allow_class = "character", has_length = 1)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
# we work with aes_string later on
facet_deparse <- deparse(substitute(facet))
if (facet_deparse != "facet") {
facet <- facet_deparse
}
if (facet %like% '".*"') {
facet <- substr(facet, 2, nchar(facet) - 1)
}
if (tolower(facet) %in% tolower(c("SIR", "sir", "interpretations", "result"))) {
facet <- "interpretation"
} else if (tolower(facet) %in% tolower(c("ab", "abx", "antibiotics"))) {
facet <- "antibiotic"
}
ggplot2::facet_wrap(facets = facet, scales = "free_x", nrow = nrow)
}
#' @rdname plot
#' @export
scale_y_percent <- function(breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1), limits = NULL) {
stop_ifnot_installed("ggplot2")
meet_criteria(breaks, allow_class = c("numeric", "integer", "function"))
meet_criteria(limits, allow_class = c("numeric", "integer"), has_length = 2, allow_NULL = TRUE, allow_NA = TRUE)
if (!is.function(breaks) && all(breaks[breaks != 0] > 1)) {
breaks <- breaks / 100
}
ggplot2::scale_y_continuous(
breaks = breaks,
labels = if (is.function(breaks)) function(x) percentage(breaks(x)) else percentage(breaks),
limits = limits
)
}
#' @rdname plot
#' @export
scale_sir_colours <- function(...,
aesthetics = "fill",
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B")) {
stop_ifnot_installed("ggplot2")
meet_criteria(aesthetics, allow_class = "character", is_in = c("alpha", "colour", "color", "fill", "linetype", "shape", "size"))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 3)
}
# behaviour until AMR pkg v1.5.0 and also when coming from ggplot_sir()
if ("colours" %in% names(list(...))) {
original_cols <- c(
S = colours_SIR[1],
SI = colours_SIR[1],
I = colours_SIR[2],
IR = colours_SIR[3],
R = colours_SIR[3]
)
colours <- replace(original_cols, names(list(...)$colours), list(...)$colours)
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
return(ggplot2::scale_fill_manual(values = colours, limits = force))
}
if (identical(unlist(list(...)), FALSE)) {
return(invisible())
}
names_susceptible <- c(
"S", "SI", "IS", "S+I", "I+S", "susceptible", "Susceptible",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible"),
"replacement",
drop = TRUE
])
)
names_incr_exposure <- c(
"I", "intermediate", "increased exposure", "incr. exposure",
"Increased exposure", "Incr. exposure", "Susceptible, incr. exp.",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Intermediate"),
"replacement",
drop = TRUE
]),
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible, incr. exp."),
"replacement",
drop = TRUE
])
)
names_resistant <- c(
"R", "IR", "RI", "R+I", "I+R", "resistant", "Resistant",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Resistant"),
"replacement",
drop = TRUE
])
)
susceptible <- rep(colours_SIR[1], length(names_susceptible))
names(susceptible) <- names_susceptible
incr_exposure <- rep(colours_SIR[2], length(names_incr_exposure))
names(incr_exposure) <- names_incr_exposure
resistant <- rep(colours_SIR[3], length(names_resistant))
names(resistant) <- names_resistant
original_cols <- c(susceptible, incr_exposure, resistant)
dots <- c(...)
# replace S, I, R as colours: scale_sir_colours(mydatavalue = "S")
dots[dots == "S"] <- colours_SIR[1]
dots[dots == "I"] <- colours_SIR[2]
dots[dots == "R"] <- colours_SIR[3]
cols <- replace(original_cols, names(dots), dots)
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
ggplot2::scale_discrete_manual(aesthetics = aesthetics, values = cols, limits = force)
}
#' @rdname plot
#' @export
theme_sir <- function() {
stop_ifnot_installed("ggplot2")
ggplot2::theme_minimal(base_size = 10) +
ggplot2::theme(
panel.grid.major.x = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major.y = ggplot2::element_line(colour = "grey75"),
# center title and subtitle
plot.title = ggplot2::element_text(hjust = 0.5),
plot.subtitle = ggplot2::element_text(hjust = 0.5)
)
}
#' @rdname plot
#' @export
labels_sir_count <- function(position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15") {
stop_ifnot_installed("ggplot2")
meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE)
meet_criteria(x, allow_class = "character", has_length = 1)
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
language <- validate_language(language)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(datalabels.colour, allow_class = "character", has_length = 1)
if (is.null(position)) {
position <- "fill"
}
if (identical(position, "fill")) {
position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE)
}
x_name <- x
ggplot2::geom_text(
mapping = ggplot2::aes_string(
label = "lbl",
x = x,
y = "value"
),
position = position,
inherit.aes = FALSE,
size = datalabels.size,
colour = datalabels.colour,
lineheight = 0.75,
data = function(x) {
transformed <- sir_df(
data = x,
translate_ab = translate_ab,
combine_SI = combine_SI,
minimum = minimum,
language = language
)
transformed$gr <- transformed[, x_name, drop = TRUE]
transformed %pm>%
pm_group_by(gr) %pm>%
pm_mutate(lbl = paste0("n=", isolates)) %pm>%
pm_ungroup() %pm>%
pm_select(-gr)
}
)
}

View File

@ -274,7 +274,7 @@ setup(
'numpy', 'numpy',
'pandas', 'pandas',
], ],
author='Dr. Matthijs Berends', author='Matthijs Berends',
author_email='m.s.berends@umcg.nl', author_email='m.s.berends@umcg.nl',
description='A Python wrapper for the AMR R package', description='A Python wrapper for the AMR R package',
long_description=open('README.md').read(), long_description=open('README.md').read(),

View File

@ -1,5 +1,5 @@
This files contains all context you must know about the AMR package for R. This files contains all context you must know about the AMR package for R.
First and foremost, you are trained on version 2.1.1.9117. Remember this whenever someone asks which AMR package version youre at. First and foremost, you are trained on version 2.1.1.9118. Remember this whenever someone asks which AMR package version youre at.
-------------------------------- --------------------------------
THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'NAMESPACE': THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'NAMESPACE':
@ -5365,11 +5365,6 @@ THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/ggplot_sir.Rd':
\name{ggplot_sir} \name{ggplot_sir}
\alias{ggplot_sir} \alias{ggplot_sir}
\alias{geom_sir} \alias{geom_sir}
\alias{facet_sir}
\alias{scale_y_percent}
\alias{scale_sir_colours}
\alias{theme_sir}
\alias{labels_sir_count}
\title{AMR Plots with \code{ggplot2}} \title{AMR Plots with \code{ggplot2}}
\usage{ \usage{
ggplot_sir( ggplot_sir(
@ -5408,28 +5403,6 @@ geom_sir(
combine_SI = TRUE, combine_SI = TRUE,
... ...
) )
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(..., aesthetics = "fill")
theme_sir()
labels_sir_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15"
)
} }
\arguments{ \arguments{
\item{data}{a \link{data.frame} with column(s) of class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})} \item{data}{a \link{data.frame} with column(s) of class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})}
@ -5483,23 +5456,20 @@ Use these functions to create bar plots for AMR data analysis. All functions rel
} }
\details{ \details{
At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}. At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}.
\subsection{The Functions}{
\code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_df]{sir_df()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. \code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_df]{sir_df()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
\code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}. Additional functions include:
\itemize{
\code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}. \item \code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
\item \code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}.
\code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. \item \code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
\item \code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction.
\code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction. \item \code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
}
\code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
\code{\link[=ggplot_sir]{ggplot_sir()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}. \code{\link[=ggplot_sir]{ggplot_sir()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}.
} }
}
\examples{ \examples{
\donttest{ \donttest{
if (require("ggplot2") && require("dplyr")) { if (require("ggplot2") && require("dplyr")) {
@ -7437,7 +7407,12 @@ THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/plot.Rd':
\alias{plot.sir} \alias{plot.sir}
\alias{autoplot.sir} \alias{autoplot.sir}
\alias{fortify.sir} \alias{fortify.sir}
\title{Plotting for Classes \code{sir}, \code{mic} and \code{disk}} \alias{facet_sir}
\alias{scale_y_percent}
\alias{scale_sir_colours}
\alias{theme_sir}
\alias{labels_sir_count}
\title{Plotting Helpers for AMR Data Analysis}
\usage{ \usage{
scale_x_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...) scale_x_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...)
@ -7535,6 +7510,32 @@ scale_fill_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...)
) )
\method{fortify}{sir}(object, ...) \method{fortify}{sir}(object, ...)
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(
...,
aesthetics = "fill",
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B")
)
theme_sir()
labels_sir_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15"
)
} }
\arguments{ \arguments{
\item{keep_operators}{a \link{character} specifying how to handle operators (such as \code{>} and \code{<=}) in the input. Accepts one of three values: \code{"all"} (or \code{TRUE}) to keep all operators, \code{"none"} (or \code{FALSE}) to remove all operators, or \code{"edges"} to keep operators only at both ends of the range.} \item{keep_operators}{a \link{character} specifying how to handle operators (such as \code{>} and \code{<=}) in the input. Accepts one of three values: \code{"all"} (or \code{TRUE}) to keep all operators, \code{"none"} (or \code{FALSE}) to remove all operators, or \code{"edges"} to keep operators only at both ends of the range.}
@ -7583,6 +7584,17 @@ The interpretation of "I" will be named "Increased exposure" for all EUCAST guid
For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} argument are: "EUCAST 2024", "EUCAST 2023", "EUCAST 2022", "EUCAST 2021", "EUCAST 2020", "EUCAST 2019", "EUCAST 2018", "EUCAST 2017", "EUCAST 2016", "EUCAST 2015", "EUCAST 2014", "EUCAST 2013", "EUCAST 2012", "EUCAST 2011", "CLSI 2024", "CLSI 2023", "CLSI 2022", "CLSI 2021", "CLSI 2020", "CLSI 2019", "CLSI 2018", "CLSI 2017", "CLSI 2016", "CLSI 2015", "CLSI 2014", "CLSI 2013", "CLSI 2012", and "CLSI 2011". For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} argument are: "EUCAST 2024", "EUCAST 2023", "EUCAST 2022", "EUCAST 2021", "EUCAST 2020", "EUCAST 2019", "EUCAST 2018", "EUCAST 2017", "EUCAST 2016", "EUCAST 2015", "EUCAST 2014", "EUCAST 2013", "EUCAST 2012", "EUCAST 2011", "CLSI 2024", "CLSI 2023", "CLSI 2022", "CLSI 2021", "CLSI 2020", "CLSI 2019", "CLSI 2018", "CLSI 2017", "CLSI 2016", "CLSI 2015", "CLSI 2014", "CLSI 2013", "CLSI 2012", and "CLSI 2011".
Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline. Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline.
\subsection{Additional \code{ggplot2} Functions}{
This package contains several functions that extend the \code{ggplot2} package, to help in visualising AMR data results. All these functions are internally used by \code{\link[=ggplot_sir]{ggplot_sir()}} too.
\itemize{
\item \code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
\item \code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}.
\item \code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). Has multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
\item \code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction.
\item \code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and number of isolates, using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
}
}
} }
\examples{ \examples{
some_mic_values <- random_mic(size = 100) some_mic_values <- random_mic(size = 100)

View File

@ -3,11 +3,6 @@
\name{ggplot_sir} \name{ggplot_sir}
\alias{ggplot_sir} \alias{ggplot_sir}
\alias{geom_sir} \alias{geom_sir}
\alias{facet_sir}
\alias{scale_y_percent}
\alias{scale_sir_colours}
\alias{theme_sir}
\alias{labels_sir_count}
\title{AMR Plots with \code{ggplot2}} \title{AMR Plots with \code{ggplot2}}
\usage{ \usage{
ggplot_sir( ggplot_sir(
@ -46,28 +41,6 @@ geom_sir(
combine_SI = TRUE, combine_SI = TRUE,
... ...
) )
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(..., aesthetics = "fill")
theme_sir()
labels_sir_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15"
)
} }
\arguments{ \arguments{
\item{data}{a \link{data.frame} with column(s) of class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})} \item{data}{a \link{data.frame} with column(s) of class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})}
@ -121,23 +94,20 @@ Use these functions to create bar plots for AMR data analysis. All functions rel
} }
\details{ \details{
At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}. At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}.
\subsection{The Functions}{
\code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_df]{sir_df()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. \code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_df]{sir_df()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
\code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}. Additional functions include:
\itemize{
\code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}. \item \code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
\item \code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}.
\code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. \item \code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
\item \code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction.
\code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction. \item \code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
}
\code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
\code{\link[=ggplot_sir]{ggplot_sir()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}. \code{\link[=ggplot_sir]{ggplot_sir()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}.
} }
}
\examples{ \examples{
\donttest{ \donttest{
if (require("ggplot2") && require("dplyr")) { if (require("ggplot2") && require("dplyr")) {

View File

@ -77,7 +77,7 @@ Ordered \link{factor} with levels \code{Negative} < \verb{Positive, unconfirmed}
} }
} }
\description{ \description{
Determine which isolates are multidrug-resistant organisms (MDRO) according to international, national and custom guidelines. Determine which isolates are multidrug-resistant organisms (MDRO) according to international, national, or custom guidelines.
} }
\details{ \details{
These functions are context-aware. This means that the \code{x} argument can be left blank if used inside a \link{data.frame} call, see \emph{Examples}. These functions are context-aware. This means that the \code{x} argument can be left blank if used inside a \link{data.frame} call, see \emph{Examples}.
@ -111,10 +111,17 @@ The international guideline for multi-drug resistant tuberculosis - World Health
The German national guideline - Mueller et al. (2015) Antimicrobial Resistance and Infection Control 4:7; \doi{10.1186/s13756-015-0047-6} The German national guideline - Mueller et al. (2015) Antimicrobial Resistance and Infection Control 4:7; \doi{10.1186/s13756-015-0047-6}
\item \code{guideline = "BRMO"} \item \code{guideline = "BRMO"}
The Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu "WIP-richtlijn BRMO (Bijzonder Resistente Micro-Organismen) (ZKH)" (\href{https://www.rivm.nl/wip-richtlijn-brmo-bijzonder-resistente-micro-organismen-zkh}{link}) The Dutch national guideline - Samenwerkingverband Richtlijnen Infectiepreventie (SRI) (2024) "Bijzonder Resistente Micro-Organismen (BRMO)" (\href{https://www.sri-richtlijnen.nl/brmo}{link})
Also:
\itemize{
\item \code{guideline = "BRMO 2017"}
The former Dutch national guideline - Werkgroep Infectiepreventie (WIP), RIVM, last revision as of 2017: "Bijzonder Resistente Micro-Organismen (BRMO)"
}
} }
Please suggest your own (country-specific) guidelines by letting us know: \url{https://github.com/msberends/AMR/issues/new}. Please suggest to implement guidelines by letting us know: \url{https://github.com/msberends/AMR/issues/new}.
} }
\section{Using Custom Guidelines}{ \section{Using Custom Guidelines}{

View File

@ -15,7 +15,12 @@
\alias{plot.sir} \alias{plot.sir}
\alias{autoplot.sir} \alias{autoplot.sir}
\alias{fortify.sir} \alias{fortify.sir}
\title{Plotting for Classes \code{sir}, \code{mic} and \code{disk}} \alias{facet_sir}
\alias{scale_y_percent}
\alias{scale_sir_colours}
\alias{theme_sir}
\alias{labels_sir_count}
\title{Plotting Helpers for AMR Data Analysis}
\usage{ \usage{
scale_x_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...) scale_x_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...)
@ -113,6 +118,32 @@ scale_fill_mic(keep_operators = "edges", mic_range = NULL, drop = FALSE, ...)
) )
\method{fortify}{sir}(object, ...) \method{fortify}{sir}(object, ...)
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(
...,
aesthetics = "fill",
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B")
)
theme_sir()
labels_sir_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
datalabels.colour = "grey15"
)
} }
\arguments{ \arguments{
\item{keep_operators}{a \link{character} specifying how to handle operators (such as \code{>} and \code{<=}) in the input. Accepts one of three values: \code{"all"} (or \code{TRUE}) to keep all operators, \code{"none"} (or \code{FALSE}) to remove all operators, or \code{"edges"} to keep operators only at both ends of the range.} \item{keep_operators}{a \link{character} specifying how to handle operators (such as \code{>} and \code{<=}) in the input. Accepts one of three values: \code{"all"} (or \code{TRUE}) to keep all operators, \code{"none"} (or \code{FALSE}) to remove all operators, or \code{"edges"} to keep operators only at both ends of the range.}
@ -161,6 +192,17 @@ The interpretation of "I" will be named "Increased exposure" for all EUCAST guid
For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} argument are: "EUCAST 2024", "EUCAST 2023", "EUCAST 2022", "EUCAST 2021", "EUCAST 2020", "EUCAST 2019", "EUCAST 2018", "EUCAST 2017", "EUCAST 2016", "EUCAST 2015", "EUCAST 2014", "EUCAST 2013", "EUCAST 2012", "EUCAST 2011", "CLSI 2024", "CLSI 2023", "CLSI 2022", "CLSI 2021", "CLSI 2020", "CLSI 2019", "CLSI 2018", "CLSI 2017", "CLSI 2016", "CLSI 2015", "CLSI 2014", "CLSI 2013", "CLSI 2012", and "CLSI 2011". For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} argument are: "EUCAST 2024", "EUCAST 2023", "EUCAST 2022", "EUCAST 2021", "EUCAST 2020", "EUCAST 2019", "EUCAST 2018", "EUCAST 2017", "EUCAST 2016", "EUCAST 2015", "EUCAST 2014", "EUCAST 2013", "EUCAST 2012", "EUCAST 2011", "CLSI 2024", "CLSI 2023", "CLSI 2022", "CLSI 2021", "CLSI 2020", "CLSI 2019", "CLSI 2018", "CLSI 2017", "CLSI 2016", "CLSI 2015", "CLSI 2014", "CLSI 2013", "CLSI 2012", and "CLSI 2011".
Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline. Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline.
\subsection{Additional \code{ggplot2} Functions}{
This package contains several functions that extend the \code{ggplot2} package, to help in visualising AMR data results. All these functions are internally used by \code{\link[=ggplot_sir]{ggplot_sir()}} too.
\itemize{
\item \code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
\item \code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}.
\item \code{\link[=scale_sir_colours]{scale_sir_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). Has multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
\item \code{\link[=theme_sir]{theme_sir()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction.
\item \code{\link[=labels_sir_count]{labels_sir_count()}} print datalabels on the bars with percentage and number of isolates, using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
}
}
} }
\examples{ \examples{
some_mic_values <- random_mic(size = 100) some_mic_values <- random_mic(size = 100)

View File

@ -213,6 +213,11 @@ pre .co, .co {
color: var(--amr-green-dark) !important; color: var(--amr-green-dark) !important;
font-style: italic !important; font-style: italic !important;
} }
div.sourceCode  pre .co,
div.sourceCode .co {
/* comments in example sections, since functions are already green too */
color: var(--bs-gray-600) !important;
}
pre code .r-out, pre code .r-out,
pre code .r-msg { pre code .r-msg {
/* output of functions */ /* output of functions */