1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-22 12:26:09 +01:00

Compare commits

..

3 Commits

Author SHA1 Message Date
ef716f6ee3 doc fix 2023-02-15 17:16:40 +01:00
d4ae174c28 docs 2023-02-15 17:03:34 +01:00
6016547f1f support for dplyr 1.1.0 2023-02-15 17:02:10 +01:00
11 changed files with 52 additions and 32 deletions

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 1.8.2.9126 Version: 1.8.2.9129
Date: 2023-02-14 Date: 2023-02-15
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,4 +1,4 @@
# AMR 1.8.2.9126 # AMR 1.8.2.9129
*(this beta version will eventually become v2.0! We're happy to reach a new major milestone soon!)* *(this beta version will eventually become v2.0! We're happy to reach a new major milestone soon!)*

View File

@ -889,34 +889,36 @@ get_current_data <- function(arg_name, call) {
valid_df <- function(x) { valid_df <- function(x) {
!is.null(x) && is.data.frame(x) !is.null(x) && is.data.frame(x)
} }
# try dplyr::cur_data_all() first to support dplyr groups
# only useful for e.g. dplyr::filter(), dplyr::mutate() and dplyr::summarise()
# not useful (throws error) with e.g. dplyr::select(), dplyr::across(), or dplyr::vars(),
# but that will be caught later on in this function
cur_data_all <- import_fn("cur_data_all", "dplyr", error_on_fail = FALSE)
if (!is.null(cur_data_all)) {
out <- tryCatch(cur_data_all(), error = function(e) NULL)
if (valid_df(out)) {
return(out)
}
}
# try a manual (base R) method, by going over all underlying environments with sys.frames() # try a manual (base R) method, by going over all underlying environments with sys.frames()
for (env in sys.frames()) { for (env in sys.frames()) {
if (!is.null(env$`.Generic`)) {
# dplyr support ----
if (!is.null(env$mask) && is.function(env$mask$current_rows) && (valid_df(env$data) || valid_df(env$`.data`))) {
# an element `.data` or `data` (containing all data) and `mask` (containing functions) will be in the environment when using dplyr verbs
# we use their mask$current_rows() to get the group rows, since dplyr::cur_data_all() is deprecated and will be removed in the future
# e.g. for `example_isolates %>% group_by(ward) %>% mutate(first = first_isolate(.))`
if (valid_df(env$data)) {
# support for dplyr 1.1.x
return(env$data[env$mask$current_rows(), , drop = FALSE])
} else {
# support for dplyr 1.0.x
return(env$`.data`[env$mask$current_rows(), , drop = FALSE])
}
# base R support ----
} else if (!is.null(env$`.Generic`)) {
# don't check `".Generic" %in% names(env)`, because in R < 3.2, `names(env)` is always NULL # don't check `".Generic" %in% names(env)`, because in R < 3.2, `names(env)` is always NULL
if (valid_df(env$`.data`)) { if (valid_df(env$xx)) {
# an element `.data` will be in the environment when using `dplyr::select()` # an element `xx` will be in the environment for rows + cols in base R, e.g. `example_isolates[c(1:3), carbapenems()]`
# (but not when using `dplyr::filter()`, `dplyr::mutate()` or `dplyr::summarise()`)
return(env$`.data`)
} else if (valid_df(env$xx)) {
# an element `xx` will be in the environment for rows + cols, e.g. `example_isolates[c(1:3), carbapenems()]`
return(env$xx) return(env$xx)
} else if (valid_df(env$x)) { } else if (valid_df(env$x)) {
# an element `x` will be in the environment for only cols, e.g. `example_isolates[, carbapenems()]` # an element `x` will be in the environment for only cols in base R, e.g. `example_isolates[, carbapenems()]`
return(env$x) return(env$x)
} }
# scoped dplyr support ----
} else if (!is.null(names(env)) && all(c(".tbl", ".vars", ".cols") %in% names(env), na.rm = TRUE) && valid_df(env$`.tbl`)) { } else if (!is.null(names(env)) && all(c(".tbl", ".vars", ".cols") %in% names(env), na.rm = TRUE) && valid_df(env$`.tbl`)) {
# an element `.tbl` will be in the environment when using scoped dplyr variants, with or without `dplyr::vars()` # an element `.tbl` will be in the environment when using scoped dplyr variants, with or without `dplyr::vars()`
# (e.g. `dplyr::summarise_at()` or `dplyr::mutate_at()`) # (e.g. `dplyr::summarise_at()` or `dplyr::mutate_at()`)

View File

@ -102,7 +102,7 @@
#' "Study Group", "Control Group")) #' "Study Group", "Control Group"))
#' ``` #' ```
#' #'
#' All types of antibiograms can be generated with the functions as described on this page, and can be plotted (using [ggplot2::autoplot()] or base \R [plot()]/[barplot()]) or printed into R Markdown / Quarto formats for reports. Use functions from specific 'table reporting' packages to transform the output of [antibiogram()] to your needs, e.g. `flextable::as_flextable()` or `gt::gt()`. #' All types of antibiograms can be generated with the functions as described on this page, and can be plotted (using [ggplot2::autoplot()] or base \R [plot()]/[barplot()]) or printed into R Markdown / Quarto formats for reports using `print()`. Use functions from specific 'table reporting' packages to transform the output of [antibiogram()] to your needs, e.g. `flextable::as_flextable()` or `gt::gt()`.
#' #'
#' Note that for combination antibiograms, it is important to realise that susceptibility can be calculated in two ways, which can be set with the `only_all_tested` argument (defaults to `FALSE`). See this example for two antibiotics, Drug A and Drug B, about how [antibiogram()] works to calculate the %SI: #' Note that for combination antibiograms, it is important to realise that susceptibility can be calculated in two ways, which can be set with the `only_all_tested` argument (defaults to `FALSE`). See this example for two antibiotics, Drug A and Drug B, about how [antibiogram()] works to calculate the %SI:
#' #'

View File

@ -177,7 +177,7 @@ first_isolate <- function(x = NULL,
include_untested_sir = TRUE, include_untested_sir = TRUE,
...) { ...) {
if (is_null_or_grouped_tbl(x)) { if (is_null_or_grouped_tbl(x)) {
# when `x` is left blank, auto determine it (get_current_data() also contains dplyr::cur_data_all()) # when `x` is left blank, auto determine it (get_current_data() searches underlying data within call)
# is also fix for using a grouped df as input (a dot as first argument) # is also fix for using a grouped df as input (a dot as first argument)
x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x) x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x)
} }
@ -634,7 +634,7 @@ filter_first_isolate <- function(x = NULL,
method = c("phenotype-based", "episode-based", "patient-based", "isolate-based"), method = c("phenotype-based", "episode-based", "patient-based", "isolate-based"),
...) { ...) {
if (is_null_or_grouped_tbl(x)) { if (is_null_or_grouped_tbl(x)) {
# when `x` is left blank, auto determine it (get_current_data() also contains dplyr::cur_data_all()) # when `x` is left blank, auto determine it (get_current_data() searches underlying data within call)
# is also fix for using a grouped df as input (a dot as first argument) # is also fix for using a grouped df as input (a dot as first argument)
x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x) x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x)
} }

View File

@ -138,7 +138,7 @@ key_antimicrobials <- function(x = NULL,
only_sir_columns = FALSE, only_sir_columns = FALSE,
...) { ...) {
if (is_null_or_grouped_tbl(x)) { if (is_null_or_grouped_tbl(x)) {
# when `x` is left blank, auto determine it (get_current_data() also contains dplyr::cur_data_all()) # when `x` is left blank, auto determine it (get_current_data() searches underlying data within call)
# is also fix for using a grouped df as input (a dot as first argument) # is also fix for using a grouped df as input (a dot as first argument)
x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x) x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x)
} }
@ -250,7 +250,7 @@ all_antimicrobials <- function(x = NULL,
only_sir_columns = FALSE, only_sir_columns = FALSE,
...) { ...) {
if (is_null_or_grouped_tbl(x)) { if (is_null_or_grouped_tbl(x)) {
# when `x` is left blank, auto determine it (get_current_data() also contains dplyr::cur_data_all()) # when `x` is left blank, auto determine it (get_current_data() searches underlying data within call)
# is also fix for using a grouped df as input (a dot as first argument) # is also fix for using a grouped df as input (a dot as first argument)
x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x) x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x)
} }

View File

@ -178,7 +178,7 @@ mdro <- function(x = NULL,
only_sir_columns = FALSE, only_sir_columns = FALSE,
...) { ...) {
if (is_null_or_grouped_tbl(x)) { if (is_null_or_grouped_tbl(x)) {
# when `x` is left blank, auto determine it (get_current_data() also contains dplyr::cur_data_all()) # when `x` is left blank, auto determine it (get_current_data() searches underlying data within call)
# is also a fix for using a grouped df as input (i.e., a dot as first argument) # is also a fix for using a grouped df as input (i.e., a dot as first argument)
x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x) x <- tryCatch(get_current_data(arg_name = "x", call = -2), error = function(e) x)
} }

View File

@ -78,7 +78,7 @@ This base R snippet will work in any version of R since April 2013 (R-3.0).
The `AMR` package supports generating traditional, combined, syndromic, and even weighted-incidence syndromic combination antibiograms (WISCA). The `AMR` package supports generating traditional, combined, syndromic, and even weighted-incidence syndromic combination antibiograms (WISCA).
If used inside R Markdown or Quarto, the table will be printed in the right output format automatically (such as markdown, LaTeX, HTML, etc.). If used inside R Markdown or Quarto, the table will be printed in the right output format automatically (such as markdown, LaTeX, HTML, etc.) when using `print()` on an antibiogram object.
```r ```r
antibiogram(example_isolates, antibiogram(example_isolates,
@ -111,6 +111,21 @@ antibiogram(example_isolates,
|Gram-negative (641-693) | 88| 99| 98| |Gram-negative (641-693) | 88| 99| 98|
|Gram-positive (345-1044) | 86| 98| 95| |Gram-positive (345-1044) | 86| 98| 95|
Like many other functions in this package, `antibiograms()` comes with support for 20 languages that are often detected automatically based on system language:
```r
antibiogram(example_isolates,
antibiotics = c("CIP", "TOB", "GEN"),
mo_transform = "gramstain",
ab_transform = "name",
language = "uk") # Ukrainian
```
|Збудник (N min-max) | Гентаміцин| Тобраміцин| Ципрофлоксацин|
|:------------------------|----------:|----------:|--------------:|
|Грамнегативні (684-686) | 96| 96| 91|
|Грампозитивні (665-1170) | 63| 34| 77|
#### Calculating resistance per group #### Calculating resistance per group

View File

@ -124,7 +124,7 @@ your_data \%>\%
}\if{html}{\out{</div>}} }\if{html}{\out{</div>}}
} }
All types of antibiograms can be generated with the functions as described on this page, and can be plotted (using \code{\link[ggplot2:autoplot]{ggplot2::autoplot()}} or base \R \code{\link[=plot]{plot()}}/\code{\link[=barplot]{barplot()}}) or printed into R Markdown / Quarto formats for reports. Use functions from specific 'table reporting' packages to transform the output of \code{\link[=antibiogram]{antibiogram()}} to your needs, e.g. \code{flextable::as_flextable()} or \code{gt::gt()}. All types of antibiograms can be generated with the functions as described on this page, and can be plotted (using \code{\link[ggplot2:autoplot]{ggplot2::autoplot()}} or base \R \code{\link[=plot]{plot()}}/\code{\link[=barplot]{barplot()}}) or printed into R Markdown / Quarto formats for reports using \code{print()}. Use functions from specific 'table reporting' packages to transform the output of \code{\link[=antibiogram]{antibiogram()}} to your needs, e.g. \code{flextable::as_flextable()} or \code{gt::gt()}.
Note that for combination antibiograms, it is important to realise that susceptibility can be calculated in two ways, which can be set with the \code{only_all_tested} argument (defaults to \code{FALSE}). See this example for two antibiotics, Drug A and Drug B, about how \code{\link[=antibiogram]{antibiogram()}} works to calculate the \%SI: Note that for combination antibiograms, it is important to realise that susceptibility can be calculated in two ways, which can be set with the \code{only_all_tested} argument (defaults to \code{FALSE}). See this example for two antibiotics, Drug A and Drug B, about how \code{\link[=antibiogram]{antibiogram()}} works to calculate the \%SI:

View File

@ -54,10 +54,13 @@ mark, .mark {
background: rgba(17, 143, 118, 0.25) !important; background: rgba(17, 143, 118, 0.25) !important;
} }
/* smaller tables */
.table {
font-size: 0.9em !important;
}
/* SYNTAX */ /* SYNTAX */
/* These are simple changes for the syntax highlighting */ /* These are simple changes for the syntax highlighting */
pre { pre {
font-size: 0.8em !important; font-size: 0.8em !important;
} }

View File

@ -52,7 +52,7 @@ $(document).ready(function() {
// add doctoral titles to authors // add doctoral titles to authors
function doct_tit(x) { function doct_tit(x) {
if (typeof(x) != "undefined") { if (typeof(x) != "undefined") {
x = x.replace(/Author, maintainer/g, "Principle developer"); x = x.replace(/Author, maintainer/g, "Principle maintainer");
x = x.replace(/Author, contributor/g, "Contributing maintainer"); x = x.replace(/Author, contributor/g, "Contributing maintainer");
x = x.replace(/Thesis advisor/g, "(former) Doctoral advisor"); x = x.replace(/Thesis advisor/g, "(former) Doctoral advisor");
// contributors // contributors