# Data Set with 2 000 Example Isolates A data set containing 2 000 microbial isolates with their full antibiograms. This data set contains randomised fictitious data, but reflects reality and can be used to practise AMR data analysis. For examples, please read [the tutorial on our website](https://amr-for-r.org/articles/AMR.html). ## Usage ``` r example_isolates ``` ## Format A [tibble](https://tibble.tidyverse.org/reference/tibble.html) with 2 000 observations and 46 variables: - `date` Date of receipt at the laboratory - `patient` ID of the patient - `age` Age of the patient - `gender` Gender of the patient, either "F" or "M" - `ward` Ward type where the patient was admitted, either "Clinical", "ICU", or "Outpatient" - `mo` ID of microorganism created with [`as.mo()`](https://amr-for-r.org/reference/as.mo.md), see also the [microorganisms](https://amr-for-r.org/reference/microorganisms.md) data set - `PEN:RIF` 40 different antimicrobials with class [`sir`](https://amr-for-r.org/reference/as.sir.md) (see [`as.sir()`](https://amr-for-r.org/reference/as.sir.md)); these column names occur in the [antimicrobials](https://amr-for-r.org/reference/antimicrobials.md) data set and can be translated with [`set_ab_names()`](https://amr-for-r.org/reference/ab_property.md) or [`ab_name()`](https://amr-for-r.org/reference/ab_property.md) ## Download Our Reference Data All reference data sets in the AMR package - including information on microorganisms, antimicrobials, and clinical breakpoints - are freely available for download in multiple formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, and Stata. For maximum compatibility, we also provide machine-readable, tab-separated plain text files suitable for use in any software, including laboratory information systems. Visit [our website for direct download links](https://amr-for-r.org/articles/datasets.html), or explore the actual files in [our GitHub repository](https://github.com/msberends/AMR/tree/main/data-raw/datasets). ## Examples ``` r example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM , MTR , CHL , COL , MUP , … ```