This example data set has the exact same structure as an export file from WHONET. Such files can be used with this package, as this example data set shows. The antibiotic results are from our example_isolates data set. All patient names were created using online surname generators and are only in place for practice purposes.
Format
A tibble with 500 observations and 53 variables:
Identification number
ID of the sampleSpecimen number
ID of the specimenOrganism
Name of the microorganism. Before analysis, you should transform this to a valid microbial class, usingas.mo()
.Country
Country of originLaboratory
Name of laboratoryLast name
Fictitious last name of patientFirst name
Fictitious initial of patientSex
Fictitious gender of patientAge
Fictitious age of patientAge category
Age group, can also be looked up usingage_groups()
Date of admission
Date of hospital admissionSpecimen date
Date when specimen was received at laboratorySpecimen type
Specimen type or groupSpecimen type (Numeric)
Translation of"Specimen type"
Reason
Reason of request with Differential DiagnosisIsolate number
ID of isolateOrganism type
Type of microorganism, can also be looked up usingmo_type()
Serotype
Serotype of microorganismBeta-lactamase
Microorganism produces beta-lactamase?ESBL
Microorganism produces extended spectrum beta-lactamase?Carbapenemase
Microorganism produces carbapenemase?MRSA screening test
Microorganism is possible MRSA?Inducible clindamycin resistance
Clindamycin can be induced?Comment
Other commentsDate of data entry
Date this data was entered in WHONETAMP_ND10:CIP_EE
28 different antibiotics. You can lookup the abbreviations in the antibiotics data set, or use e.g.ab_name("AMP")
to get the official name immediately. Before analysis, you should transform this to a valid antibiotic class, usingas.sir()
.
Details
Like all data sets in this package, this data set is publicly available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. Please visit our website for the download links. The actual files are of course available on our GitHub repository.
Examples
WHONET
#> # A tibble: 500 × 53
#> `Identification number` `Specimen number` Organism Country Laboratory
#> <chr> <int> <chr> <chr> <chr>
#> 1 fe41d7bafa 1748 SPN Belgium National …
#> 2 91f175ec37 1767 eco The Netherlands National …
#> 3 cc4015056e 1343 eco The Netherlands National …
#> 4 e864b692f5 1894 MAP Denmark National …
#> 5 3d051fe345 1739 PVU Belgium National …
#> 6 c80762a08d 1846 103 The Netherlands National …
#> 7 8022d3727c 1628 103 Denmark National …
#> 8 f3dc5f553d 1493 eco The Netherlands National …
#> 9 15add38f6c 1847 eco France National …
#> 10 fd41248def 1458 eco Germany National …
#> # ℹ 490 more rows
#> # ℹ 48 more variables: `Last name` <chr>, `First name` <chr>, Sex <chr>,
#> # Age <dbl>, `Age category` <chr>, `Date of admission` <date>,
#> # `Specimen date` <date>, `Specimen type` <chr>,
#> # `Specimen type (Numeric)` <dbl>, Reason <chr>, `Isolate number` <int>,
#> # `Organism type` <chr>, Serotype <chr>, `Beta-lactamase` <lgl>, ESBL <lgl>,
#> # Carbapenemase <lgl>, `MRSA screening test` <lgl>, …