This transforms a vector to a new class disk
, which is a disk diffusion growth zone size (around an antibiotic disk) in millimetres between 6 and 50.
Arguments
- x
vector
- na.rm
a logical indicating whether missing values should be removed
Value
An integer with additional class disk
Details
Interpret disk values as SIR values with as.sir()
. It supports guidelines from EUCAST and CLSI.
Disk diffusion growth zone sizes must be between 6 and 50 millimetres. Values higher than 50 but lower than 100 will be maximised to 50. All others input values outside the 6-50 range will return NA
.
NA_disk_
is a missing value of the new disk
class.
Examples
# transform existing disk zones to the `disk` class (using base R)
df <- data.frame(
microorganism = "Escherichia coli",
AMP = 20,
CIP = 14,
GEN = 18,
TOB = 16
)
df[, 2:5] <- lapply(df[, 2:5], as.disk)
str(df)
#> 'data.frame': 1 obs. of 5 variables:
#> $ microorganism: chr "Escherichia coli"
#> $ AMP : 'disk' int 20
#> $ CIP : 'disk' int 14
#> $ GEN : 'disk' int 18
#> $ TOB : 'disk' int 16
# \donttest{
# transforming is easier with dplyr:
if (require("dplyr")) {
df %>% mutate(across(AMP:TOB, as.disk))
}
#> microorganism AMP CIP GEN TOB
#> 1 Escherichia coli 20 14 18 16
# }
# interpret disk values, see ?as.sir
as.sir(
x = as.disk(18),
mo = "Strep pneu", # `mo` will be coerced with as.mo()
ab = "ampicillin", # and `ab` with as.ab()
guideline = "EUCAST"
)
#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
#> all the details of the breakpoint interpretations. Note that some
#> microorganisms might not have breakpoints for each antimicrobial drug in
#> EUCAST 2023.
#> Error in as_sir_method(method_short = "disk", method_long = "disk diffusion zones", x = x, mo = mo, ab = ab, guideline = guideline, uti = uti, conserve_capped_values = FALSE, add_intrinsic_resistance = add_intrinsic_resistance, reference_data = reference_data, include_screening = include_screening, include_PKPD = include_PKPD, breakpoint_type = breakpoint_type, host = NULL, ...): object 'mo_var_found' not found
# interpret whole data set, pretend to be all from urinary tract infections:
as.sir(df, uti = TRUE)
#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
#> all the details of the breakpoint interpretations. Note that some
#> microorganisms might not have breakpoints for each antimicrobial drug in
#> EUCAST 2023.
#> Error in as_sir_method(method_short = "disk", method_long = "disk diffusion zones", x = x, mo = mo, ab = ab, guideline = guideline, uti = uti, conserve_capped_values = FALSE, add_intrinsic_resistance = add_intrinsic_resistance, reference_data = reference_data, include_screening = include_screening, include_PKPD = include_PKPD, breakpoint_type = breakpoint_type, host = NULL, ...): object 'mo_var_found' not found