# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Data Analysis for R # # # # SOURCE # # https://github.com/msberends/AMR # # # # LICENCE # # (c) 2018-2021 Berends MS, Luz CF et al. # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # #' Age in Years of Individuals #' #' Calculates age in years based on a reference date, which is the sytem date at default. #' @inheritSection lifecycle Stable Lifecycle #' @param x date(s), [character] (vectors) will be coerced with [as.POSIXlt()] #' @param reference reference date(s) (defaults to today), [character] (vectors) will be coerced with [as.POSIXlt()] #' @param exact a [logical] to indicate whether age calculation should be exact, i.e. with decimals. It divides the number of days of [year-to-date](https://en.wikipedia.org/wiki/Year-to-date) (YTD) of `x` by the number of days in the year of `reference` (either 365 or 366). #' @param na.rm a [logical] to indicate whether missing values should be removed #' @param ... arguments passed on to [as.POSIXlt()], such as `origin` #' @details Ages below 0 will be returned as `NA` with a warning. Ages above 120 will only give a warning. #' #' This function vectorises over both `x` and `reference`, meaning that either can have a length of 1 while the other argument has a larger length. #' @return An [integer] (no decimals) if `exact = FALSE`, a [double] (with decimals) otherwise #' @seealso To split ages into groups, use the [age_groups()] function. #' @inheritSection AMR Read more on Our Website! #' @export #' @examples #' # 10 random birth dates #' df <- data.frame(birth_date = Sys.Date() - runif(10) * 25000) #' # add ages #' df$age <- age(df$birth_date) #' # add exact ages #' df$age_exact <- age(df$birth_date, exact = TRUE) #' #' df age <- function(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...) { meet_criteria(x, allow_class = c("character", "Date", "POSIXt")) meet_criteria(reference, allow_class = c("character", "Date", "POSIXt")) meet_criteria(exact, allow_class = "logical", has_length = 1) meet_criteria(na.rm, allow_class = "logical", has_length = 1) if (length(x) != length(reference)) { if (length(x) == 1) { x <- rep(x, length(reference)) } else if (length(reference) == 1) { reference <- rep(reference, length(x)) } else { stop_("`x` and `reference` must be of same length, or `reference` must be of length 1.") } } x <- as.POSIXlt(x, ...) reference <- as.POSIXlt(reference, ...) # from https://stackoverflow.com/a/25450756/4575331 years_gap <- reference$year - x$year ages <- ifelse(reference$mon < x$mon | (reference$mon == x$mon & reference$mday < x$mday), as.integer(years_gap - 1), as.integer(years_gap)) # add decimals if (exact == TRUE) { # get dates of `x` when `x` would have the year of `reference` x_in_reference_year <- as.POSIXlt(paste0(format(as.Date(reference), "%Y"), format(as.Date(x), "-%m-%d")), format = "%Y-%m-%d") # get differences in days n_days_x_rest <- as.double(difftime(as.Date(reference), as.Date(x_in_reference_year), units = "days")) # get numbers of days the years of `reference` has for a reliable denominator n_days_reference_year <- as.POSIXlt(paste0(format(as.Date(reference), "%Y"), "-12-31"), format = "%Y-%m-%d")$yday + 1 # add decimal parts of year mod <- n_days_x_rest / n_days_reference_year # negative mods are cases where `x_in_reference_year` > `reference` - so 'add' a year mod[mod < 0] <- mod[mod < 0] + 1 # and finally add to ages ages <- ages + mod } if (any(ages < 0, na.rm = TRUE)) { ages[ages < 0] <- NA warning_("NAs introduced for ages below 0.", call = TRUE) } if (any(ages > 120, na.rm = TRUE)) { warning_("Some ages are above 120.", call = TRUE) } if (isTRUE(na.rm)) { ages <- ages[!is.na(ages)] } if (exact == TRUE) { as.double(ages) } else { as.integer(ages) } } #' Split Ages into Age Groups #' #' Split ages into age groups defined by the `split` argument. This allows for easier demographic (antimicrobial resistance) analysis. #' @inheritSection lifecycle Stable Lifecycle #' @param x age, e.g. calculated with [age()] #' @param split_at values to split `x` at, defaults to age groups 0-11, 12-24, 25-54, 55-74 and 75+. See *Details*. #' @param na.rm a [logical] to indicate whether missing values should be removed #' @details To split ages, the input for the `split_at` argument can be: #' #' * A [numeric] vector. A value of e.g. `c(10, 20)` will split `x` on 0-9, 10-19 and 20+. A value of only `50` will split `x` on 0-49 and 50+. #' The default is to split on young children (0-11), youth (12-24), young adults (25-54), middle-aged adults (55-74) and elderly (75+). #' * A character: #' - `"children"` or `"kids"`, equivalent of: `c(0, 1, 2, 4, 6, 13, 18)`. This will split on 0, 1, 2-3, 4-5, 6-12, 13-17 and 18+. #' - `"elderly"` or `"seniors"`, equivalent of: `c(65, 75, 85)`. This will split on 0-64, 65-74, 75-84, 85+. #' - `"fives"`, equivalent of: `1:20 * 5`. This will split on 0-4, 5-9, ..., 95-99, 100+. #' - `"tens"`, equivalent of: `1:10 * 10`. This will split on 0-9, 10-19, ..., 90-99, 100+. #' @return Ordered [factor] #' @seealso To determine ages, based on one or more reference dates, use the [age()] function. #' @export #' @inheritSection AMR Read more on Our Website! #' @examples #' ages <- c(3, 8, 16, 54, 31, 76, 101, 43, 21) #' #' # split into 0-49 and 50+ #' age_groups(ages, 50) #' #' # split into 0-19, 20-49 and 50+ #' age_groups(ages, c(20, 50)) #' #' # split into groups of ten years #' age_groups(ages, 1:10 * 10) #' age_groups(ages, split_at = "tens") #' #' # split into groups of five years #' age_groups(ages, 1:20 * 5) #' age_groups(ages, split_at = "fives") #' #' # split specifically for children #' age_groups(ages, c(1, 2, 4, 6, 13, 17)) #' age_groups(ages, "children") #' #' \donttest{ #' # resistance of ciprofloxacin per age group #' if (require("dplyr")) { #' example_isolates %>% #' filter_first_isolate() %>% #' filter(mo == as.mo("E. coli")) %>% #' group_by(age_group = age_groups(age)) %>% #' select(age_group, CIP) %>% #' ggplot_rsi(x = "age_group", minimum = 0) #' } #' } age_groups <- function(x, split_at = c(12, 25, 55, 75), na.rm = FALSE) { meet_criteria(x, allow_class = c("numeric", "integer"), is_positive_or_zero = TRUE, is_finite = TRUE) meet_criteria(split_at, allow_class = c("numeric", "integer", "character"), is_positive_or_zero = TRUE, is_finite = TRUE) meet_criteria(na.rm, allow_class = "logical", has_length = 1) if (any(x < 0, na.rm = TRUE)) { x[x < 0] <- NA warning_("NAs introduced for ages below 0.", call = TRUE) } if (is.character(split_at)) { split_at <- split_at[1L] if (split_at %like% "^(child|kid|junior)") { split_at <- c(0, 1, 2, 4, 6, 13, 18) } else if (split_at %like% "^(elder|senior)") { split_at <- c(65, 75, 85) } else if (split_at %like% "^five") { split_at <- 1:20 * 5 } else if (split_at %like% "^ten") { split_at <- 1:10 * 10 } } split_at <- sort(unique(as.integer(split_at))) if (!split_at[1] == 0) { # add base number 0 split_at <- c(0, split_at) } split_at <- split_at[!is.na(split_at)] stop_if(length(split_at) == 1, "invalid value for `split_at`") # only 0 is available # turn input values to 'split_at' indices y <- x lbls <- split_at for (i in seq_len(length(split_at))) { y[x >= split_at[i]] <- i # create labels lbls[i - 1] <- paste0(unique(c(split_at[i - 1], split_at[i] - 1)), collapse = "-") } # last category lbls[length(lbls)] <- paste0(split_at[length(split_at)], "+") agegroups <- factor(lbls[y], levels = lbls, ordered = TRUE) if (isTRUE(na.rm)) { agegroups <- agegroups[!is.na(agegroups)] } agegroups }