This transforms vectors to a new class mic
, which treats the input as decimal numbers, while maintaining operators (such as ">=") and only allowing valid MIC values known to the field of (medical) microbiology.
Usage
as.mic(x, na.rm = FALSE, keep_operators = "all")
is.mic(x)
NA_mic_
rescale_mic(x, mic_range, keep_operators = "edges", as.mic = TRUE)
# S3 method for mic
droplevels(x, as.mic = FALSE, ...)
Arguments
- x
- na.rm
a logical indicating whether missing values should be removed
- keep_operators
a character specifying how to handle operators (such as
>
and<=
) in the input. Accepts one of three values:"all"
(orTRUE
) to keep all operators,"none"
(orFALSE
) to remove all operators, or"edges"
to keep operators only at both ends of the range.- mic_range
a manual range to plot the MIC values, e.g.,
mic_range = c(0.001, 32)
. UseNA
to set no limit on one side, e.g.,mic_range = c(NA, 32)
.- as.mic
a logical to indicate whether the
mic
class should be kept - the default isFALSE
- ...
arguments passed on to methods
Value
Ordered factor with additional class mic
, that in mathematical operations acts as decimal numbers. Bare in mind that the outcome of any mathematical operation on MICs will return a numeric value.
Details
To interpret MIC values as SIR values, use as.sir()
on MIC values. It supports guidelines from EUCAST (2011-2023) and CLSI (2011-2023).
This class for MIC values is a quite a special data type: formally it is an ordered factor with valid MIC values as factor levels (to make sure only valid MIC values are retained), but for any mathematical operation it acts as decimal numbers:
<- random_mic(10)
x
x#> Class 'mic'
#> [1] 16 1 8 8 64 >=128 0.0625 32 32 16
is.factor(x)
#> [1] TRUE
1] * 2
x[#> [1] 32
median(x)
#> [1] 26
This makes it possible to maintain operators that often come with MIC values, such ">=" and "<=", even when filtering using numeric values in data analysis, e.g.:
> 4]
x[x #> Class 'mic'
#> [1] 16 8 8 64 >=128 32 32 16
<- data.frame(x, hospital = "A")
df subset(df, x > 4) # or with dplyr: df %>% filter(x > 4)
#> x hospital
#> 1 16 A
#> 5 64 A
#> 6 >=128 A
#> 8 32 A
#> 9 32 A
#> 10 16 A
The following generic functions are implemented for the MIC class: !
, !=
, %%
, %/%
, &
, *
, +
, -
, /
, <
, <=
, ==
, >
, >=
, ^
, |
, abs()
, acos()
, acosh()
, all()
, any()
, asin()
, asinh()
, atan()
, atanh()
, ceiling()
, cos()
, cosh()
, cospi()
, cummax()
, cummin()
, cumprod()
, cumsum()
, digamma()
, exp()
, expm1()
, floor()
, gamma()
, lgamma()
, log()
, log1p()
, log2()
, log10()
, max()
, mean()
, min()
, prod()
, range()
, round()
, sign()
, signif()
, sin()
, sinh()
, sinpi()
, sqrt()
, sum()
, tan()
, tanh()
, tanpi()
, trigamma()
and trunc()
. Some functions of the stats
package are also implemented: median()
, quantile()
, mad()
, IQR()
, fivenum()
. Also, boxplot.stats()
is supported. Since sd()
and var()
are non-generic functions, these could not be extended. Use mad()
as an alternative, or use e.g. sd(as.numeric(x))
where x
is your vector of MIC values.
Using as.double()
or as.numeric()
on MIC values will remove the operators and return a numeric vector. Do not use as.integer()
on MIC values as by the R convention on factors, it will return the index of the factor levels (which is often useless for regular users).
Use droplevels()
to drop unused levels. At default, it will return a plain factor. Use droplevels(..., as.mic = TRUE)
to maintain the mic
class.
With rescale_mic()
, existing MIC ranges can be rescaled to a defined range of MIC values. This can be useful to better compare MIC distributions.
NA_mic_
is a missing value of the new mic
class, analogous to e.g. base R's NA_character_
.
Examples
mic_data <- as.mic(c(">=32", "1.0", "1", "1.00", 8, "<=0.128", "8", "16", "16"))
mic_data
#> Class 'mic'
#> [1] >=32 1 1 1 8 <=0.128 8 16 16
is.mic(mic_data)
#> [1] TRUE
# this can also coerce combined MIC/SIR values:
as.mic("<=0.002; S")
#> Class 'mic'
#> [1] <=0.002
# mathematical processing treats MICs as numeric values
fivenum(mic_data)
#> [1] 0.128 1.000 8.000 16.000 32.000
quantile(mic_data)
#> 0% 25% 50% 75% 100%
#> 0.128 1.000 8.000 16.000 32.000
all(mic_data < 512)
#> [1] TRUE
# rescale MICs using rescale_mic()
rescale_mic(mic_data, mic_range = c(4, 16))
#> Class 'mic'
#> [1] >=16 <=4 <=4 <=4 8 <=4 8 >=16 >=16
# interpret MIC values
as.sir(
x = as.mic(2),
mo = as.mo("Streptococcus pneumoniae"),
ab = "AMX",
guideline = "EUCAST"
)
#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
#> all the details of the breakpoint interpretations. Note that some
#> microorganisms might not have breakpoints for each antimicrobial drug in
#> EUCAST 2023.
#> Interpreting MIC values: 'AMX' (amoxicillin), EUCAST 2023...
#> NOTE
#> • Multiple breakpoints available for amoxicillin (AMX) in Streptococcus
#> pneumoniae - assuming body site 'Meningitis'.
#> Class 'sir'
#> [1] R
as.sir(
x = as.mic(c(0.01, 2, 4, 8)),
mo = as.mo("Streptococcus pneumoniae"),
ab = "AMX",
guideline = "EUCAST"
)
#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
#> all the details of the breakpoint interpretations. Note that some
#> microorganisms might not have breakpoints for each antimicrobial drug in
#> EUCAST 2023.
#> Interpreting MIC values: 'AMX' (amoxicillin), EUCAST 2023...
#> NOTE
#> • Multiple breakpoints available for amoxicillin (AMX) in Streptococcus
#> pneumoniae - assuming body site 'Meningitis'.
#> Class 'sir'
#> [1] S R R R
# plot MIC values, see ?plot
plot(mic_data)
plot(mic_data, mo = "E. coli", ab = "cipro")
if (require("ggplot2")) {
autoplot(mic_data, mo = "E. coli", ab = "cipro")
}
if (require("ggplot2")) {
autoplot(mic_data, mo = "E. coli", ab = "cipro", language = "nl") # Dutch
}