# Split Ages into Age Groups Split ages into age groups defined by the `split` argument. This allows for easier demographic (antimicrobial resistance) analysis. The function returns an ordered [factor](https://rdrr.io/r/base/factor.html). ## Usage ``` r age_groups(x, split_at = c(0, 12, 25, 55, 75), names = NULL, na.rm = FALSE) ``` ## Arguments - x: Age, e.g. calculated with [`age()`](https://amr-for-r.org/reference/age.md). - split_at: Values to split `x` at - the default is age groups 0-11, 12-24, 25-54, 55-74 and 75+. See *Details*. - names: Optional names to be given to the various age groups. - na.rm: A [logical](https://rdrr.io/r/base/logical.html) to indicate whether missing values should be removed. ## Value Ordered [factor](https://rdrr.io/r/base/factor.html) ## Details To split ages, the input for the `split_at` argument can be: - A [numeric](https://rdrr.io/r/base/numeric.html) vector. A value of e.g. `c(10, 20)` will split `x` on 0-9, 10-19 and 20+. A value of only `50` will split `x` on 0-49 and 50+. The default is to split on young children (0-11), youth (12-24), young adults (25-54), middle-aged adults (55-74) and elderly (75+). - A character: - `"children"` or `"kids"`, equivalent of: `c(0, 1, 2, 4, 6, 13, 18)`. This will split on 0, 1, 2-3, 4-5, 6-12, 13-17 and 18+. - `"elderly"` or `"seniors"`, equivalent of: `c(65, 75, 85)`. This will split on 0-64, 65-74, 75-84, 85+. - `"fives"`, equivalent of: `1:20 * 5`. This will split on 0-4, 5-9, ..., 95-99, 100+. - `"tens"`, equivalent of: `1:10 * 10`. This will split on 0-9, 10-19, ..., 90-99, 100+. ## See also To determine ages, based on one or more reference dates, use the [`age()`](https://amr-for-r.org/reference/age.md) function. ## Examples ``` r ages <- c(3, 8, 16, 54, 31, 76, 101, 43, 21) # split into 0-49 and 50+ age_groups(ages, 50) #> [1] 0-49 0-49 0-49 50+ 0-49 50+ 50+ 0-49 0-49 #> Levels: 0-49 < 50+ # split into 0-19, 20-49 and 50+ age_groups(ages, c(20, 50)) #> [1] 0-19 0-19 0-19 50+ 20-49 50+ 50+ 20-49 20-49 #> Levels: 0-19 < 20-49 < 50+ age_groups(ages, c(20, 50), names = c("Under 20 years", "20 to 50 years", "Over 50 years")) #> [1] Under 20 years Under 20 years Under 20 years Over 50 years 20 to 50 years #> [6] Over 50 years Over 50 years 20 to 50 years 20 to 50 years #> Levels: Under 20 years < 20 to 50 years < Over 50 years # split into groups of ten years age_groups(ages, 1:10 * 10) #> [1] 0-9 0-9 10-19 50-59 30-39 70-79 100+ 40-49 20-29 #> 11 Levels: 0-9 < 10-19 < 20-29 < 30-39 < 40-49 < 50-59 < 60-69 < ... < 100+ age_groups(ages, split_at = "tens") #> [1] 0-9 0-9 10-19 50-59 30-39 70-79 100+ 40-49 20-29 #> 11 Levels: 0-9 < 10-19 < 20-29 < 30-39 < 40-49 < 50-59 < 60-69 < ... < 100+ # split into groups of five years age_groups(ages, 1:20 * 5) #> [1] 0-4 5-9 15-19 50-54 30-34 75-79 100+ 40-44 20-24 #> 21 Levels: 0-4 < 5-9 < 10-14 < 15-19 < 20-24 < 25-29 < 30-34 < ... < 100+ age_groups(ages, split_at = "fives") #> [1] 0-4 5-9 15-19 50-54 30-34 75-79 100+ 40-44 20-24 #> 21 Levels: 0-4 < 5-9 < 10-14 < 15-19 < 20-24 < 25-29 < 30-34 < ... < 100+ # split specifically for children age_groups(ages, c(1, 2, 4, 6, 13, 18)) #> [1] 2-3 6-12 13-17 18+ 18+ 18+ 18+ 18+ 18+ #> Levels: 0 < 1 < 2-3 < 4-5 < 6-12 < 13-17 < 18+ age_groups(ages, "children") #> [1] 2-3 6-12 13-17 18+ 18+ 18+ 18+ 18+ 18+ #> Levels: 0 < 1 < 2-3 < 4-5 < 6-12 < 13-17 < 18+ # \donttest{ # resistance of ciprofloxacin per age group if (require("dplyr") && require("ggplot2")) { example_isolates %>% filter_first_isolate() %>% filter(mo == as.mo("Escherichia coli")) %>% group_by(age_group = age_groups(age)) %>% select(age_group, CIP) %>% ggplot_sir( x = "age_group", minimum = 0, x.title = "Age Group", title = "Ciprofloxacin resistance per age group" ) } #> Loading required package: ggplot2 # } ```