<!-- Generated by pkgdown: do not edit by hand --> <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Principal Component Analysis (for AMR) — pca • AMR (for R)</title> <!-- favicons --> <link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png"> <link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png"> <link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png" /> <link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png" /> <link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png" /> <link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png" /> <!-- jquery --> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script> <!-- Bootstrap --> <link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.4.0/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous" /> <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script> <!-- bootstrap-toc --> <link rel="stylesheet" href="../bootstrap-toc.css"> <script src="../bootstrap-toc.js"></script> <!-- Font Awesome icons --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" /> <!-- clipboard.js --> <script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script> <!-- headroom.js --> <script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../pkgdown.js"></script> <link href="../extra.css" rel="stylesheet"> <script src="../extra.js"></script> <meta property="og:title" content="Principal Component Analysis (for AMR) — pca" /> <meta property="og:description" content="Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables." /> <meta property="og:image" content="https://msberends.github.io/AMR/logo.png" /> <!-- mathjax --> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> <!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> </head> <body data-spy="scroll" data-target="#toc"> <div class="container template-reference-topic"> <header> <div class="navbar navbar-default navbar-fixed-top" role="navigation"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">AMR (for R)</a> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9008</span> </span> </div> <div id="navbar" class="navbar-collapse collapse"> <ul class="nav navbar-nav"> <li> <a href="../index.html"> <span class="fas fa-home"></span> Home </a> </li> <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> <span class="fas fa-question-circle"></span> How to <span class="caret"></span> </a> <ul class="dropdown-menu" role="menu"> <li> <a href="../articles/AMR.html"> <span class="fas fa-directions"></span> Conduct AMR analysis </a> </li> <li> <a href="../articles/resistance_predict.html"> <span class="fas fa-dice"></span> Predict antimicrobial resistance </a> </li> <li> <a href="../articles/datasets.html"> <span class="fas fa-database"></span> Data sets for download / own use </a> </li> <li> <a href="../articles/PCA.html"> <span class="fas fa-compress"></span> Conduct principal component analysis for AMR </a> </li> <li> <a href="../articles/MDR.html"> <span class="fas fa-skull-crossbones"></span> Determine multi-drug resistance (MDR) </a> </li> <li> <a href="../articles/WHONET.html"> <span class="fas fa-globe-americas"></span> Work with WHONET data </a> </li> <li> <a href="../articles/SPSS.html"> <span class="fas fa-file-upload"></span> Import data from SPSS/SAS/Stata </a> </li> <li> <a href="../articles/EUCAST.html"> <span class="fas fa-exchange-alt"></span> Apply EUCAST rules </a> </li> <li> <a href="../reference/mo_property.html"> <span class="fas fa-bug"></span> Get properties of a microorganism </a> </li> <li> <a href="../reference/ab_property.html"> <span class="fas fa-capsules"></span> Get properties of an antibiotic </a> </li> <li> <a href="../articles/benchmarks.html"> <span class="fas fa-shipping-fast"></span> Other: benchmarks </a> </li> </ul> </li> <li> <a href="../reference/index.html"> <span class="fas fa-book-open"></span> Manual </a> </li> <li> <a href="../authors.html"> <span class="fas fa-users"></span> Authors </a> </li> <li> <a href="../news/index.html"> <span class="far fa-newspaper"></span> Changelog </a> </li> </ul> <ul class="nav navbar-nav navbar-right"> <li> <a href="https://github.com/msberends/AMR"> <span class="fab fa-github"></span> Source Code </a> </li> <li> <a href="../survey.html"> <span class="fas fa-clipboard-list"></span> Survey </a> </li> </ul> </div><!--/.nav-collapse --> </div><!--/.container --> </div><!--/.navbar --> </header> <div class="row"> <div class="col-md-9 contents"> <div class="page-header"> <h1>Principal Component Analysis (for AMR)</h1> <small class="dont-index">Source: <a href='https://github.com/msberends/AMR/blob/master/R/pca.R'><code>R/pca.R</code></a></small> <div class="hidden name"><code>pca.Rd</code></div> </div> <div class="ref-description"> <p>Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables.</p> </div> <pre class="usage"><span class='fu'>pca</span><span class='op'>(</span> <span class='va'>x</span>, <span class='va'>...</span>, retx <span class='op'>=</span> <span class='cn'>TRUE</span>, center <span class='op'>=</span> <span class='cn'>TRUE</span>, scale. <span class='op'>=</span> <span class='cn'>TRUE</span>, tol <span class='op'>=</span> <span class='cn'>NULL</span>, rank. <span class='op'>=</span> <span class='cn'>NULL</span> <span class='op'>)</span></pre> <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> <table class="ref-arguments"> <colgroup><col class="name" /><col class="desc" /></colgroup> <tr> <th>x</th> <td><p>a <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> containing numeric columns</p></td> </tr> <tr> <th>...</th> <td><p>columns of <code>x</code> to be selected for PCA, can be unquoted since it supports quasiquotation.</p></td> </tr> <tr> <th>retx</th> <td><p>a logical value indicating whether the rotated variables should be returned.</p></td> </tr> <tr> <th>center</th> <td><p>a logical value indicating whether the variables should be shifted to be zero centered. Alternately, a vector of length equal the number of columns of <code>x</code> can be supplied. The value is passed to <code>scale</code>.</p></td> </tr> <tr> <th>scale.</th> <td><p>a logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is <code>FALSE</code> for consistency with S, but in general scaling is advisable. Alternatively, a vector of length equal the number of columns of <code>x</code> can be supplied. The value is passed to <code><a href='https://rdrr.io/r/base/scale.html'>scale</a></code>.</p></td> </tr> <tr> <th>tol</th> <td><p>a value indicating the magnitude below which components should be omitted. (Components are omitted if their standard deviations are less than or equal to <code>tol</code> times the standard deviation of the first component.) With the default null setting, no components are omitted (unless <code>rank.</code> is specified less than <code><a href='https://rdrr.io/r/base/Extremes.html'>min(dim(x))</a></code>.). Other settings for tol could be <code>tol = 0</code> or <code>tol = sqrt(.Machine$double.eps)</code>, which would omit essentially constant components.</p></td> </tr> <tr> <th>rank.</th> <td><p>optionally, a number specifying the maximal rank, i.e., maximal number of principal components to be used. Can be set as alternative or in addition to <code>tol</code>, useful notably when the desired rank is considerably smaller than the dimensions of the matrix.</p></td> </tr> </table> <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> <p>An object of classes pca and <a href='https://rdrr.io/r/stats/prcomp.html'>prcomp</a></p> <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2> <p>The <code>pca()</code> function takes a <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> as input and performs the actual PCA with the <span style="R">R</span> function <code><a href='https://rdrr.io/r/stats/prcomp.html'>prcomp()</a></code>.</p> <p>The result of the <code>pca()</code> function is a <a href='https://rdrr.io/r/stats/prcomp.html'>prcomp</a> object, with an additional attribute <code>non_numeric_cols</code> which is a vector with the column names of all columns that do not contain numeric values. These are probably the groups and labels, and will be used by <code><a href='ggplot_pca.html'>ggplot_pca()</a></code>.</p> <h2 class="hasAnchor" id="maturing-lifecycle"><a class="anchor" href="#maturing-lifecycle"></a>Maturing Lifecycle</h2> <p><img src='figures/lifecycle_maturing.svg' style=margin-bottom:5px /> <br /> The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing</strong>. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome <a href='https://github.com/msberends/AMR/issues'>to suggest changes at our repository</a> or <a href='AMR.html'>write us an email (see section 'Contact Us')</a>.</p> <h2 class="hasAnchor" id="read-more-on-our-website-"><a class="anchor" href="#read-more-on-our-website-"></a>Read more on Our Website!</h2> <p>On our website <a href='https://msberends.github.io/AMR/'>https://msberends.github.io/AMR/</a> you can find <a href='https://msberends.github.io/AMR/articles/AMR.html'>a comprehensive tutorial</a> about how to conduct AMR analysis, the <a href='https://msberends.github.io/AMR/reference/'>complete documentation of all functions</a> and <a href='https://msberends.github.io/AMR/articles/WHONET.html'>an example analysis using WHONET data</a>. As we would like to better understand the backgrounds and needs of our users, please <a href='https://msberends.github.io/AMR/survey.html'>participate in our survey</a>!</p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> <pre class="examples"><span class='co'># `example_isolates` is a dataset available in the AMR package.</span> <span class='co'># See ?example_isolates.</span> <span class='co'># \donttest{</span> <span class='kw'>if</span> <span class='op'>(</span><span class='kw'><a href='https://rdrr.io/r/base/library.html'>require</a></span><span class='op'>(</span><span class='st'><a href='https://dplyr.tidyverse.org'>"dplyr"</a></span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span> <span class='co'># calculate the resistance per group first </span> <span class='va'>resistance_data</span> <span class='op'><-</span> <span class='va'>example_isolates</span> <span class='op'>%>%</span> <span class='fu'><a href='https://dplyr.tidyverse.org/reference/group_by.html'>group_by</a></span><span class='op'>(</span>order <span class='op'>=</span> <span class='fu'><a href='mo_property.html'>mo_order</a></span><span class='op'>(</span><span class='va'>mo</span><span class='op'>)</span>, <span class='co'># group on anything, like order</span> genus <span class='op'>=</span> <span class='fu'><a href='mo_property.html'>mo_genus</a></span><span class='op'>(</span><span class='va'>mo</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>%>%</span> <span class='co'># and genus as we do here</span> <span class='fu'><a href='https://dplyr.tidyverse.org/reference/summarise_all.html'>summarise_if</a></span><span class='op'>(</span><span class='va'>is.rsi</span>, <span class='va'>resistance</span><span class='op'>)</span> <span class='co'># then get resistance of all drugs</span> <span class='co'># now conduct PCA for certain antimicrobial agents</span> <span class='va'>pca_result</span> <span class='op'><-</span> <span class='va'>resistance_data</span> <span class='op'>%>%</span> <span class='fu'>pca</span><span class='op'>(</span><span class='va'>AMC</span>, <span class='va'>CXM</span>, <span class='va'>CTX</span>, <span class='va'>CAZ</span>, <span class='va'>GEN</span>, <span class='va'>TOB</span>, <span class='va'>TMP</span>, <span class='va'>SXT</span><span class='op'>)</span> <span class='va'>pca_result</span> <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>pca_result</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/stats/biplot.html'>biplot</a></span><span class='op'>(</span><span class='va'>pca_result</span><span class='op'>)</span> <span class='fu'><a href='ggplot_pca.html'>ggplot_pca</a></span><span class='op'>(</span><span class='va'>pca_result</span><span class='op'>)</span> <span class='co'># a new and convenient plot function</span> <span class='op'>}</span> <span class='co'># }</span> </pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> <nav id="toc" data-toggle="toc" class="sticky-top"> <h2 data-toc-skip>Contents</h2> </nav> </div> </div> <footer> <div class="copyright"> <p>Developed by <a href='https://www.rug.nl/staff/m.s.berends/'>Matthijs S. Berends</a>, <a href='https://www.rug.nl/staff/c.f.luz/'>Christian F. Luz</a>, <a href='https://www.rug.nl/staff/a.w.friedrich/'>Alexander W. Friedrich</a>, <a href='https://www.rug.nl/staff/b.sinha/'>Bhanu N. M. Sinha</a>, <a href='https://www.rug.nl/staff/c.j.albers/'>Casper J. Albers</a>, <a href='https://www.rug.nl/staff/c.glasner/'>Corinna Glasner</a>.</p> </div> <div class="pkgdown"> <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p> </div> </footer> </div> </body> </html>