# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # SOURCE # # https://gitlab.com/msberends/AMR # # # # LICENCE # # (c) 2018-2020 Berends MS, Luz CF et al. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # Visit our website for more info: https://msberends.gitlab.io/AMR. # # ==================================================================== # #' Transform to antibiotic ID #' #' Use this function to determine the antibiotic code of one or more antibiotics. The data set [antibiotics] will be searched for abbreviations, official names and synonyms (brand names). #' @inheritSection lifecycle Maturing lifecycle #' @param x character vector to determine to antibiotic ID #' @param ... arguments passed on to internal functions #' @rdname as.ab #' @inheritSection WHOCC WHOCC #' @details All entries in the [antibiotics] data set have three different identifiers: a human readable EARS-Net code (column `ab`, used by ECDC and WHONET), an ATC code (column `atc`, used by WHO), and a CID code (column `cid`, Compound ID, used by PubChem). The data set contains more than 5,000 official brand names from many different countries, as found in PubChem. #' #' Use the [ab_property()] functions to get properties based on the returned antibiotic ID, see Examples. #' @section Source: #' World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology: \url{https://www.whocc.no/atc_ddd_index/} #' #' WHONET 2019 software: \url{http://www.whonet.org/software.html} #' #' European Commission Public Health PHARMACEUTICALS - COMMUNITY REGISTER: \url{http://ec.europa.eu/health/documents/community-register/html/atc.htm} #' @aliases ab #' @return Character (vector) with class [`ab`]. Unknown values will return `NA`. #' @seealso [antibiotics] for the dataframe that is being used to determine ATCs. #' @inheritSection AMR Read more on our website! #' @export #' @examples #' # these examples all return "ERY", the ID of erythromycin: #' as.ab("J01FA01") #' as.ab("J 01 FA 01") #' as.ab("Erythromycin") #' as.ab("eryt") #' as.ab(" eryt 123") #' as.ab("ERYT") #' as.ab("ERY") #' as.ab("eritromicine") # spelled wrong, yet works #' as.ab("Erythrocin") # trade name #' as.ab("Romycin") # trade name #' #' # spelling from different languages and dyslexia are no problem #' ab_atc("ceftriaxon") #' ab_atc("cephtriaxone") # small spelling error #' ab_atc("cephthriaxone") # or a bit more severe #' ab_atc("seephthriaaksone") # and even this works #' #' # use ab_* functions to get a specific properties (see ?ab_property); #' # they use as.ab() internally: #' ab_name("J01FA01") # "Erythromycin" #' ab_name("eryt") # "Erythromycin" as.ab <- function(x, ...) { check_dataset_integrity() if (is.ab(x)) { return(x) } if (all(toupper(x) %in% antibiotics$ab)) { # valid AB code, but not yet right class return(structure(.Data = toupper(x), class = c("ab", "character"))) } x_bak <- x # remove diacritics x <- iconv(x, from = "UTF-8", to = "ASCII//TRANSLIT") x <- gsub('"', "", x, fixed = TRUE) # remove suffices x_bak_clean <- gsub("_(mic|rsi|dis[ck])$", "", x, ignore.case = TRUE) # remove disk concentrations, like LVX_NM -> LVX x_bak_clean <- gsub("_[A-Z]{2}[0-9_.]{0,3}$", "", x_bak_clean, ignore.case = TRUE) # remove part between brackets if that's followed by another string x_bak_clean <- gsub("(.*)+ [(].*[)]", "\\1", x_bak_clean) # keep only max 1 space x_bak_clean <- trimws(gsub(" +", " ", x_bak_clean, ignore.case = TRUE)) # non-character, space or number should be a slash x_bak_clean <- gsub("[^A-Za-z0-9 -]", "/", x_bak_clean) # spaces around non-characters must be removed: amox + clav -> amox/clav x_bak_clean <- gsub("(.*[a-zA-Z0-9]) ([^a-zA-Z0-9].*)", "\\1\\2", x_bak_clean) x_bak_clean <- gsub("(.*[^a-zA-Z0-9]) ([a-zA-Z0-9].*)", "\\1\\2", x_bak_clean) # remove hyphen after a starting "co" x_bak_clean <- gsub("^co-", "co", x_bak_clean, ignore.case = TRUE) # replace text 'and' with a slash x_bak_clean <- gsub(" and ", "/", x_bak_clean, ignore.case = TRUE) x <- unique(x_bak_clean) x_new <- rep(NA_character_, length(x)) x_unknown <- character(0) for (i in seq_len(length(x))) { if (is.na(x[i]) | is.null(x[i])) { next } if (identical(x[i], "")) { x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1]) next } # prevent "bacteria" from coercing to TMP, since Bacterial is a brand name of it if (identical(tolower(x[i]), "bacteria")) { x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1]) next } # exact AB code found <- antibiotics[which(antibiotics$ab == toupper(x[i])), ]$ab if (length(found) > 0) { x_new[i] <- found[1L] next } # exact ATC code found <- antibiotics[which(antibiotics$atc == toupper(x[i])), ]$ab if (length(found) > 0) { x_new[i] <- found[1L] next } # exact CID code found <- antibiotics[which(antibiotics$cid == x[i]), ]$ab if (length(found) > 0) { x_new[i] <- found[1L] next } # exact name found <- antibiotics[which(toupper(antibiotics$name) == toupper(x[i])), ]$ab if (length(found) > 0) { x_new[i] <- found[1L] next } # exact LOINC code loinc_found <- unlist(lapply(antibiotics$loinc, function(s) if (x[i] %in% s) { TRUE } else { FALSE })) found <- antibiotics$ab[loinc_found == TRUE] if (length(found) > 0) { x_new[i] <- found[1L] next } # exact synonym synonym_found <- unlist(lapply(antibiotics$synonyms, function(s) if (toupper(x[i]) %in% toupper(s)) { TRUE } else { FALSE })) found <- antibiotics$ab[synonym_found == TRUE] if (length(found) > 0) { x_new[i] <- found[1L] next } # exact abbreviation abbr_found <- unlist(lapply(antibiotics$abbreviations, function(a) if (toupper(x[i]) %in% toupper(a)) { TRUE } else { FALSE })) found <- antibiotics$ab[abbr_found == TRUE] if (length(found) > 0) { x_new[i] <- found[1L] next } # first >=4 characters of name if (nchar(x[i]) >= 4) { found <- antibiotics[which(toupper(antibiotics$name) %like% paste0("^", x[i])), ]$ab if (length(found) > 0) { x_new[i] <- found[1L] next } } # allow characters that resemble others, but only continue when having more than 3 characters if (nchar(x[i]) <= 3) { x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1]) next } x_spelling <- tolower(x[i]) x_spelling <- gsub("[iy]+", "[iy]+", x_spelling) x_spelling <- gsub("(c|k|q|qu|s|z|x|ks)+", "(c|k|q|qu|s|z|x|ks)+", x_spelling) x_spelling <- gsub("(ph|f|v)+", "(ph|f|v)+", x_spelling) x_spelling <- gsub("(th|t)+", "(th|t)+", x_spelling) x_spelling <- gsub("a+", "a+", x_spelling) x_spelling <- gsub("e+", "e+", x_spelling) x_spelling <- gsub("o+", "o+", x_spelling) # allow any ending of -in/-ine and -im/-ime x_spelling <- gsub("(\\[iy\\]\\+(n|m)|\\[iy\\]\\+(n|m)e\\+)$", "[iy]+(n|m)e*", x_spelling) # allow any ending of -ol/-ole x_spelling <- gsub("(o\\+l|o\\+le\\+)$", "o+le*", x_spelling) # allow any ending of -on/-one x_spelling <- gsub("(o\\+n|o\\+ne\\+)$", "o+ne*", x_spelling) # replace multiple same characters to single one with '+', like "ll" -> "l+" x_spelling <- gsub("(.)\\1+", "\\1+", x_spelling) # replace spaces and slashes with a possibility on both x_spelling <- gsub("[ /]", "( |/)", x_spelling) # try if name starts with it found <- antibiotics[which(antibiotics$name %like% paste0("^", x_spelling)), ]$ab if (length(found) > 0) { x_new[i] <- found[1L] next } # and try if any synonym starts with it synonym_found <- unlist(lapply(antibiotics$synonyms, function(s) if (any(s %like% paste0("^", x_spelling))) { TRUE } else { FALSE })) found <- antibiotics$ab[synonym_found == TRUE] if (length(found) > 0) { x_new[i] <- found[1L] next } # try by removing all spaces if (x[i] %like% " ") { found <- suppressWarnings(as.ab(gsub(" +", "", x[i]))) if (length(found) > 0 & !is.na(found)) { x_new[i] <- found[1L] next } } # try by removing all spaces and numbers if (x[i] %like% " " | x[i] %like% "[0-9]") { found <- suppressWarnings(as.ab(gsub("[ 0-9]", "", x[i]))) if (length(found) > 0 & !is.na(found)) { x_new[i] <- found[1L] next } } if (!isFALSE(list(...)$initial_search)) { # transform back from other languages and try again x_translated <- paste(lapply(strsplit(x[i], "[^a-zA-Z0-9 ]"), function(y) { for (i in seq_len(length(y))) { y[i] <- ifelse(tolower(y[i]) %in% tolower(translations_file$replacement), translations_file[which(tolower(translations_file$replacement) == tolower(y[i]) & !isFALSE(translations_file$fixed)), "pattern"], y[i]) } y })[[1]], collapse = "/") x_translated_guess <- suppressWarnings(as.ab(x_translated, initial_search = FALSE)) if (!is.na(x_translated_guess)) { x_new[i] <- x_translated_guess next } if (!isFALSE(list(...)$initial_search2)) { # now also try to coerce brandname combinations like "Amoxy/clavulanic acid" x_translated <- paste(lapply(strsplit(x_translated, "[^a-zA-Z0-9 ]"), function(y) { for (i in seq_len(length(y))) { y_name <- suppressWarnings(ab_name(y[i], language = NULL, initial_search = FALSE, initial_search2 = FALSE)) y[i] <- ifelse(!is.na(y_name), y_name, y[i]) } y })[[1]], collapse = "/") x_translated_guess <- suppressWarnings(as.ab(x_translated, initial_search = FALSE)) if (!is.na(x_translated_guess)) { x_new[i] <- x_translated_guess next } } } # try by removing all trailing capitals if (x[i] %like_case% "[a-z]+[A-Z]+$") { found <- suppressWarnings(as.ab(gsub("[A-Z]+$", "", x[i]))) if (length(found) > 0 & !is.na(found)) { x_new[i] <- found[1L] next } } # not found x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1]) } # take failed ATC codes apart from rest x_unknown_ATCs <- x_unknown[x_unknown %like% "[A-Z][0-9][0-9][A-Z][A-Z][0-9][0-9]"] x_unknown <- x_unknown[!x_unknown %in% x_unknown_ATCs] if (length(x_unknown_ATCs) > 0) { warning("These ATC codes are not (yet) in the antibiotics data set: ", paste('"', sort(unique(x_unknown_ATCs)), '"', sep = "", collapse = ", "), ".", call. = FALSE) } if (length(x_unknown) > 0) { warning("These values could not be coerced to a valid antimicrobial ID: ", paste('"', sort(unique(x_unknown)), '"', sep = "", collapse = ", "), ".", call. = FALSE) } x_result <- data.frame(x = x_bak_clean, stringsAsFactors = FALSE) %>% left_join(data.frame(x = x, x_new = x_new, stringsAsFactors = FALSE), by = "x") %>% pull(x_new) if (length(x_result) == 0) { x_result <- NA_character_ } structure(.Data = x_result, class = c("ab", "character")) } #' @rdname as.ab #' @export is.ab <- function(x) { inherits(x, "ab") } #' @exportMethod print.ab #' @export #' @noRd print.ab <- function(x, ...) { cat("Class 'ab'\n") print(as.character(x), quote = FALSE) } #' @exportMethod as.data.frame.ab #' @export #' @noRd as.data.frame.ab <- function(x, ...) { nm <- deparse1(substitute(x)) if (!"nm" %in% names(list(...))) { as.data.frame.vector(as.ab(x), ..., nm = nm) } else { as.data.frame.vector(as.ab(x), ...) } } #' @exportMethod [.ab #' @export #' @noRd "[.ab" <- function(x, ...) { y <- NextMethod() attributes(y) <- attributes(x) y } #' @exportMethod [[.ab #' @export #' @noRd "[[.ab" <- function(x, ...) { y <- NextMethod() attributes(y) <- attributes(x) y } #' @exportMethod [<-.ab #' @export #' @noRd "[<-.ab" <- function(i, j, ..., value) { y <- NextMethod() attributes(y) <- attributes(i) class_integrity_check(y, "antimicrobial code", antibiotics$ab) } #' @exportMethod [[<-.ab #' @export #' @noRd "[[<-.ab" <- function(i, j, ..., value) { y <- NextMethod() attributes(y) <- attributes(i) class_integrity_check(y, "antimicrobial code", antibiotics$ab) } #' @exportMethod c.ab #' @export #' @noRd c.ab <- function(x, ...) { y <- NextMethod() attributes(y) <- attributes(x) class_integrity_check(y, "antimicrobial code", antibiotics$ab) }