# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Data Analysis for R # # # # SOURCE # # https://github.com/msberends/AMR # # # # LICENCE # # (c) 2018-2021 Berends MS, Luz CF et al. # # Developed at the University of Groningen, the Netherlands, in # # collaboration with non-profit organisations Certe Medical # # Diagnostics & Advice, and University Medical Center Groningen. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # #' Antibiotic Class Selectors #' #' These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class, without the need to define the columns or antibiotic abbreviations. #' @inheritSection lifecycle Stable Lifecycle #' @param ab_class an antimicrobial class, such as `"carbapenems"`. The columns `group`, `atc_group1` and `atc_group2` of the [antibiotics] data set will be searched (case-insensitive) for this value. #' @param only_rsi_columns a [logical] to indicate whether only columns of class `` must be selected (defaults to `FALSE`), see [as.rsi()] #' @details #' These functions can be used in data set calls for selecting columns and filtering rows. They are heavily inspired by the [Tidyverse selection helpers](https://tidyselect.r-lib.org/reference/language.html), but also work in base \R and not only in `dplyr` verbs. Nonetheless, they are very convenient to use with `dplyr` functions such as [`select()`][dplyr::select()], [`filter()`][dplyr::filter()] and [`summarise()`][dplyr::summarise()], see *Examples*. #' #' All columns in the data in which these functions are called will be searched for known antibiotic names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) in the [antibiotics] data set. This means that a selector such as [aminoglycosides()] will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc. Use the [ab_class()] function to filter/select on a manually defined antibiotic class. #' #' @section Full list of supported agents: #' #' `r paste0("* ", sapply(c("AMINOGLYCOSIDES", "AMINOPENICILLINS", "BETALACTAMS", "CARBAPENEMS", "CEPHALOSPORINS", "CEPHALOSPORINS_1ST", "CEPHALOSPORINS_2ND", "CEPHALOSPORINS_3RD", "CEPHALOSPORINS_4TH", "CEPHALOSPORINS_5TH", "FLUOROQUINOLONES", "GLYCOPEPTIDES", "LINCOSAMIDES", "LIPOGLYCOPEPTIDES", "MACROLIDES", "OXAZOLIDINONES", "PENICILLINS", "POLYMYXINS", "STREPTOGRAMINS", "QUINOLONES", "TETRACYCLINES", "UREIDOPENICILLINS"), function(x) paste0("``", tolower(x), "()`` can select ", vector_and(paste0(ab_name(eval(parse(text = x), envir = asNamespace("AMR")), language = NULL, tolower = TRUE), " (", eval(parse(text = x), envir = asNamespace("AMR")), ")"), quotes = FALSE))), "\n", collapse = "")` #' @rdname antibiotic_class_selectors #' @name antibiotic_class_selectors #' @export #' @inheritSection AMR Reference Data Publicly Available #' @inheritSection AMR Read more on Our Website! #' @examples #' # `example_isolates` is a data set available in the AMR package. #' # See ?example_isolates. #' #' # base R ------------------------------------------------------------------ #' #' # select columns 'IPM' (imipenem) and 'MEM' (meropenem) #' example_isolates[, carbapenems()] #' #' # select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' #' example_isolates[, c("mo", aminoglycosides())] #' #' # filter using any() or all() #' example_isolates[any(carbapenems() == "R"), ] #' subset(example_isolates, any(carbapenems() == "R")) #' #' # filter on any or all results in the carbapenem columns (i.e., IPM, MEM): #' example_isolates[any(carbapenems()), ] #' example_isolates[all(carbapenems()), ] #' #' # filter with multiple antibiotic selectors using c() #' example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ] #' #' # filter + select in one go: get penicillins in carbapenems-resistant strains #' example_isolates[any(carbapenems() == "R"), penicillins()] #' #' #' # dplyr ------------------------------------------------------------------- #' \donttest{ #' if (require("dplyr")) { #' #' # get AMR for all aminoglycosides e.g., per hospital: #' example_isolates %>% #' group_by(hospital_id) %>% #' summarise(across(aminoglycosides(), resistance)) #' #' # this will select columns 'IPM' (imipenem) and 'MEM' (meropenem): #' example_isolates %>% #' select(carbapenems()) #' #' # this will select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB': #' example_isolates %>% #' select(mo, aminoglycosides()) #' #' # any() and all() work in dplyr's filter() too: #' example_isolates %>% #' filter(any(aminoglycosides() == "R"), #' all(cephalosporins_2nd() == "R")) #' #' # also works with c(): #' example_isolates %>% #' filter(any(c(carbapenems(), aminoglycosides()) == "R")) #' #' # not setting any/all will automatically apply all(): #' example_isolates %>% #' filter(aminoglycosides() == "R") #' #> i Assuming a filter on all 4 aminoglycosides. #' #' # this will select columns 'mo' and all antimycobacterial drugs ('RIF'): #' example_isolates %>% #' select(mo, ab_class("mycobact")) #' #' # get bug/drug combinations for only macrolides in Gram-positives: #' example_isolates %>% #' filter(mo_is_gram_positive()) %>% #' select(mo, macrolides()) %>% #' bug_drug_combinations() %>% #' format() #' #' data.frame(some_column = "some_value", #' J01CA01 = "S") %>% # ATC code of ampicillin #' select(penicillins()) # only the 'J01CA01' column will be selected #' #' #' # with dplyr 1.0.0 and higher (that adds 'across()'), this is all equal: #' example_isolates[carbapenems() == "R", ] #' example_isolates %>% filter(carbapenems() == "R") #' example_isolates %>% filter(across(carbapenems(), ~.x == "R")) #' } #' } ab_class <- function(ab_class, only_rsi_columns = FALSE) { meet_criteria(ab_class, allow_class = "character", has_length = 1) ab_selector(NULL, only_rsi_columns = only_rsi_columns, ab_class = ab_class) } #' @rdname antibiotic_class_selectors #' @export aminoglycosides <- function(only_rsi_columns = FALSE) { ab_selector("aminoglycosides", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export aminopenicillins <- function(only_rsi_columns = FALSE) { ab_selector("aminopenicillins", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export betalactams <- function(only_rsi_columns = FALSE) { ab_selector("betalactams", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export carbapenems <- function(only_rsi_columns = FALSE) { ab_selector("carbapenems", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export cephalosporins <- function(only_rsi_columns = FALSE) { ab_selector("cephalosporins", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export cephalosporins_1st <- function(only_rsi_columns = FALSE) { ab_selector("cephalosporins_1st", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export cephalosporins_2nd <- function(only_rsi_columns = FALSE) { ab_selector("cephalosporins_2nd", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export cephalosporins_3rd <- function(only_rsi_columns = FALSE) { ab_selector("cephalosporins_3rd", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export cephalosporins_4th <- function(only_rsi_columns = FALSE) { ab_selector("cephalosporins_4th", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export cephalosporins_5th <- function(only_rsi_columns = FALSE) { ab_selector("cephalosporins_5th", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export fluoroquinolones <- function(only_rsi_columns = FALSE) { ab_selector("fluoroquinolones", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export glycopeptides <- function(only_rsi_columns = FALSE) { ab_selector("glycopeptides", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export lincosamides <- function(only_rsi_columns = FALSE) { ab_selector("lincosamides", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export lipoglycopeptides <- function(only_rsi_columns = FALSE) { ab_selector("lipoglycopeptides", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export macrolides <- function(only_rsi_columns = FALSE) { ab_selector("macrolides", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export oxazolidinones <- function(only_rsi_columns = FALSE) { ab_selector("oxazolidinones", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export penicillins <- function(only_rsi_columns = FALSE) { ab_selector("penicillins", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export polymyxins <- function(only_rsi_columns = FALSE) { ab_selector("polymyxins", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export streptogramins <- function(only_rsi_columns = FALSE) { ab_selector("streptogramins", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export quinolones <- function(only_rsi_columns = FALSE) { ab_selector("quinolones", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export tetracyclines <- function(only_rsi_columns = FALSE) { ab_selector("tetracyclines", only_rsi_columns = only_rsi_columns) } #' @rdname antibiotic_class_selectors #' @export ureidopenicillins <- function(only_rsi_columns = FALSE) { ab_selector("ureidopenicillins", only_rsi_columns = only_rsi_columns) } ab_selector <- function(function_name, only_rsi_columns, ab_class = NULL) { meet_criteria(function_name, allow_class = "character", has_length = 1, allow_NULL = TRUE, .call_depth = 1) meet_criteria(only_rsi_columns, allow_class = "logical", has_length = 1, .call_depth = 1) meet_criteria(ab_class, allow_class = "character", has_length = 1, allow_NULL = TRUE, .call_depth = 1) # get_current_data() has to run each time, for cases where e.g., filter() and select() are used in same call vars_df <- get_current_data(arg_name = NA, call = -3) # to improve speed, get_column_abx() will only run once when e.g. in a select or group call ab_in_data <- get_column_abx(vars_df, info = FALSE, only_rsi_columns = only_rsi_columns, sort = FALSE) if (length(ab_in_data) == 0) { message_("No antimicrobial agents found in the data.") return(NULL) } if (is.null(ab_class)) { # their upper case equivalent are vectors with class , created in data-raw/_internals.R abx <- get(toupper(function_name), envir = asNamespace("AMR")) ab_group <- function_name examples <- paste0(" (such as ", vector_or(ab_name(sample(abx, size = min(2, length(abx)), replace = FALSE), tolower = TRUE, language = NULL), quotes = FALSE), ")") } else { # this for the 'manual' ab_class() function abx <- subset(AB_lookup, group %like% ab_class | atc_group1 %like% ab_class | atc_group2 %like% ab_class)$ab ab_group <- find_ab_group(ab_class) function_name <- "ab_class" examples <- paste0(" (such as ", find_ab_names(ab_class, 2), ")") } # get the columns with a group names in the chosen ab class agents <- ab_in_data[names(ab_in_data) %in% abx] if (message_not_thrown_before(function_name)) { if (length(agents) == 0) { message_("No antimicrobial agents of class '", ab_group, "' found", examples, ".") } else { agents_formatted <- paste0("'", font_bold(agents, collapse = NULL), "'") agents_names <- ab_name(names(agents), tolower = TRUE, language = NULL) need_name <- generalise_antibiotic_name(agents) != generalise_antibiotic_name(agents_names) agents_formatted[need_name] <- paste0(agents_formatted[need_name], " (", agents_names[need_name], ")") message_("For `", function_name, "(", ifelse(function_name == "ab_class", paste0("\"", ab_class, "\""), ""), ")` using ", ifelse(length(agents) == 1, "column: ", "columns: "), vector_and(agents_formatted, quotes = FALSE, sort = FALSE)) } remember_thrown_message(function_name) } if (!is.null(attributes(vars_df)$type) && attributes(vars_df)$type %in% c("dplyr_cur_data_all", "base_R") && !any(as.character(sys.calls()) %like% paste0("(across|if_any|if_all)\\((c\\()?[a-z(), ]*", function_name))) { structure(unname(agents), class = c("ab_selector", "character")) } else { # don't return with "ab_selector" class if method is a dplyr selector, # dplyr::select() will complain: # > Subscript has the wrong type `ab_selector`. # > It must be numeric or character. unname(agents) } } #' @method c ab_selector #' @export #' @noRd c.ab_selector <- function(...) { structure(unlist(lapply(list(...), as.character)), class = c("ab_selector", "character")) } all_any_ab_selector <- function(type, ..., na.rm = TRUE) { cols_ab <- c(...) result <- cols_ab[toupper(cols_ab) %in% c("R", "S", "I")] if (length(result) == 0) { message_("Filtering ", type, " of columns ", vector_and(font_bold(cols_ab, collapse = NULL), quotes = "'"), ' to contain value "R", "S" or "I"') result <- c("R", "S", "I") } cols_ab <- cols_ab[!cols_ab %in% result] df <- get_current_data(arg_name = NA, call = -3) if (type == "all") { scope_fn <- all } else { scope_fn <- any } x_transposed <- as.list(as.data.frame(t(df[, cols_ab, drop = FALSE]), stringsAsFactors = FALSE)) vapply(FUN.VALUE = logical(1), X = x_transposed, FUN = function(y) scope_fn(y %in% result, na.rm = na.rm), USE.NAMES = FALSE) } #' @method all ab_selector #' @export #' @noRd all.ab_selector <- function(..., na.rm = FALSE) { # this is all() for all_any_ab_selector("all", ..., na.rm = na.rm) } #' @method any ab_selector #' @export #' @noRd any.ab_selector <- function(..., na.rm = FALSE) { all_any_ab_selector("any", ..., na.rm = na.rm) } #' @method all ab_selector_any_all #' @export #' @noRd all.ab_selector_any_all <- function(..., na.rm = FALSE) { # this is all() on a logical vector from `==.ab_selector` or `!=.ab_selector` # e.g., example_isolates %>% filter(all(carbapenems() == "R")) # so just return the vector as is, only correcting for na.rm out <- unclass(c(...)) if (na.rm == TRUE) { out <- out[!is.na(out)] } out } #' @method any ab_selector_any_all #' @export #' @noRd any.ab_selector_any_all <- function(..., na.rm = FALSE) { # this is any() on a logical vector from `==.ab_selector` or `!=.ab_selector` # e.g., example_isolates %>% filter(any(carbapenems() == "R")) # so just return the vector as is, only correcting for na.rm out <- unclass(c(...)) if (na.rm == TRUE) { out <- out[!is.na(out)] } out } #' @method == ab_selector #' @export #' @noRd `==.ab_selector` <- function(e1, e2) { calls <- as.character(match.call()) fn_name <- calls[2] # keep only the ... in c(...) fn_name <- gsub("^(c\\()(.*)(\\))$", "\\2", fn_name) if (is_any(fn_name)) { type <- "any" } else if (is_all(fn_name)) { type <- "all" } else { type <- "all" if (length(e1) > 1) { message_("Assuming a filter on ", type, " ", length(e1), " ", gsub("[\\(\\)]", "", fn_name), ". Wrap around `all()` or `any()` to prevent this note.") } } structure(all_any_ab_selector(type = type, e1, e2), class = c("ab_selector_any_all", "logical")) } #' @method != ab_selector #' @export #' @noRd `!=.ab_selector` <- function(e1, e2) { calls <- as.character(match.call()) fn_name <- calls[2] # keep only the ... in c(...) fn_name <- gsub("^(c\\()(.*)(\\))$", "\\2", fn_name) if (is_any(fn_name)) { type <- "any" } else if (is_all(fn_name)) { type <- "all" } else { type <- "all" if (length(e1) > 1) { message_("Assuming a filter on ", type, " ", length(e1), " ", gsub("[\\(\\)]", "", fn_name), ". Wrap around `all()` or `any()` to prevent this note.") } } # this is `!=`, so turn around the values rsi <- c("R", "S", "I") e2 <- rsi[rsi != e2] structure(all_any_ab_selector(type = type, e1, e2), class = c("ab_selector_any_all", "logical")) } is_any <- function(el1) { syscall <- paste0(trimws(deparse(sys.calls()[[1]])), collapse = " ") el1 <- gsub("(.*),.*", "\\1", el1) syscall %like% paste0("[^_a-zA-Z0-9]any\\(", "(c\\()?", el1) } is_all <- function(el1) { syscall <- paste0(trimws(deparse(sys.calls()[[1]])), collapse = " ") el1 <- gsub("(.*),.*", "\\1", el1) syscall %like% paste0("[^_a-zA-Z0-9]all\\(", "(c\\()?", el1) } find_ab_group <- function(ab_class) { ab_class <- gsub("[^a-zA-Z0-9]", ".*", ab_class) AB_lookup %pm>% subset(group %like% ab_class | atc_group1 %like% ab_class | atc_group2 %like% ab_class) %pm>% pm_pull(group) %pm>% unique() %pm>% tolower() %pm>% sort() %pm>% paste(collapse = "/") } find_ab_names <- function(ab_group, n = 3) { ab_group <- gsub("[^a-zA-Z|0-9]", ".*", ab_group) # try popular first, they have DDDs drugs <- antibiotics[which((!is.na(antibiotics$iv_ddd) | !is.na(antibiotics$oral_ddd)) & antibiotics$name %unlike% " " & antibiotics$group %like% ab_group & antibiotics$ab %unlike% "[0-9]$"), ]$name if (length(drugs) < n) { # now try it all drugs <- antibiotics[which((antibiotics$group %like% ab_group | antibiotics$atc_group1 %like% ab_group | antibiotics$atc_group2 %like% ab_group) & antibiotics$ab %unlike% "[0-9]$"), ]$name } if (length(drugs) == 0) { return("??") } vector_or(ab_name(sample(drugs, size = min(n, length(drugs)), replace = FALSE), tolower = TRUE, language = NULL), quotes = FALSE) }