# ==================================================================== # # TITLE: # # AMR: An R Package for Working with Antimicrobial Resistance Data # # # # SOURCE CODE: # # https://github.com/msberends/AMR # # # # PLEASE CITE THIS SOFTWARE AS: # # Berends MS, Luz CF, Friedrich AW, et al. (2022). # # AMR: An R Package for Working with Antimicrobial Resistance Data. # # Journal of Statistical Software, 104(3), 1-31. # # https://doi.org/10.18637/jss.v104.i03 # # # # Developed at the University of Groningen and the University Medical # # Center Groningen in The Netherlands, in collaboration with many # # colleagues from around the world, see our website. # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # We created this package for both routine data analysis and academic # # research and it was publicly released in the hope that it will be # # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. # # # # Visit our website for the full manual and a complete tutorial about # # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # #' AMR Plots with `ggplot2` #' #' Use these functions to create bar plots for AMR data analysis. All functions rely on [ggplot2][ggplot2::ggplot()] functions. #' @param data a [data.frame] with column(s) of class [`sir`] (see [as.sir()]) #' @param position position adjustment of bars, either `"fill"`, `"stack"` or `"dodge"` #' @param x variable to show on x axis, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable #' @param fill variable to categorise using the plots legend, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable #' @param breaks a [numeric] vector of positions #' @param limits a [numeric] vector of length two providing limits of the scale, use `NA` to refer to the existing minimum or maximum #' @param facet variable to split plots by, either `"interpretation"` (default) or `"antibiotic"` or a grouping variable #' @inheritParams proportion #' @param nrow (when using `facet`) number of rows #' @param colours a named vactor with colour to be used for filling. The default colours are colour-blind friendly. #' @param datalabels show datalabels using [labels_sir_count()] #' @param datalabels.size size of the datalabels #' @param datalabels.colour colour of the datalabels #' @param title text to show as title of the plot #' @param subtitle text to show as subtitle of the plot #' @param caption text to show as caption of the plot #' @param x.title text to show as x axis description #' @param y.title text to show as y axis description #' @param ... other arguments passed on to [geom_sir()] or, in case of [scale_sir_colours()], named values to set colours. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. See *Examples*. #' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` argument. See [count_df()]. #' #' [geom_sir()] will take any variable from the data that has an [`sir`] class (created with [as.sir()]) using [sir_df()] and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. #' #' Additional functions include: #' #' * [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()]. #' * [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()]. #' * [scale_sir_colours()] sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. #' * [theme_sir()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction. #' * [labels_sir_count()] print datalabels on the bars with percentage and amount of isolates using [ggplot2::geom_text()]. #' #' [ggplot_sir()] is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (`%>%`). See *Examples*. #' @rdname ggplot_sir #' @export #' @examples #' \donttest{ #' if (require("ggplot2") && require("dplyr")) { #' # get antimicrobial results for drugs against a UTI: #' ggplot(example_isolates %>% select(AMX, NIT, FOS, TMP, CIP)) + #' geom_sir() #' } #' if (require("ggplot2") && require("dplyr")) { #' # prettify the plot using some additional functions: #' df <- example_isolates %>% select(AMX, NIT, FOS, TMP, CIP) #' ggplot(df) + #' geom_sir() + #' scale_y_percent() + #' scale_sir_colours() + #' labels_sir_count() + #' theme_sir() #' } #' if (require("ggplot2") && require("dplyr")) { #' # or better yet, simplify this using the wrapper function - a single command: #' example_isolates %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_sir() #' } #' if (require("ggplot2") && require("dplyr")) { #' # get only proportions and no counts: #' example_isolates %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_sir(datalabels = FALSE) #' } #' if (require("ggplot2") && require("dplyr")) { #' # add other ggplot2 arguments as you like: #' example_isolates %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_sir( #' width = 0.5, #' colour = "black", #' size = 1, #' linetype = 2, #' alpha = 0.25 #' ) #' } #' if (require("ggplot2") && require("dplyr")) { #' # you can alter the colours with colour names: #' example_isolates %>% #' select(AMX) %>% #' ggplot_sir(colours = c(SI = "yellow")) #' } #' if (require("ggplot2") && require("dplyr")) { #' # but you can also use the built-in colour-blind friendly colours for #' # your plots, where "S" is green, "I" is yellow and "R" is red: #' data.frame( #' x = c("Value1", "Value2", "Value3"), #' y = c(1, 2, 3), #' z = c("Value4", "Value5", "Value6") #' ) %>% #' ggplot() + #' geom_col(aes(x = x, y = y, fill = z)) + #' scale_sir_colours(Value4 = "S", Value5 = "I", Value6 = "R") #' } #' if (require("ggplot2") && require("dplyr")) { #' # resistance of ciprofloxacine per age group #' example_isolates %>% #' mutate(first_isolate = first_isolate()) %>% #' filter( #' first_isolate == TRUE, #' mo == as.mo("Escherichia coli") #' ) %>% #' # age_groups() is also a function in this AMR package: #' group_by(age_group = age_groups(age)) %>% #' select(age_group, CIP) %>% #' ggplot_sir(x = "age_group") #' } #' if (require("ggplot2") && require("dplyr")) { #' # a shorter version which also adjusts data label colours: #' example_isolates %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_sir(colours = FALSE) #' } #' if (require("ggplot2") && require("dplyr")) { #' # it also supports groups (don't forget to use the group var on `x` or `facet`): #' example_isolates %>% #' filter(mo_is_gram_negative(), ward != "Outpatient") %>% #' # select only UTI-specific drugs #' select(ward, AMX, NIT, FOS, TMP, CIP) %>% #' group_by(ward) %>% #' ggplot_sir( #' x = "ward", #' facet = "antibiotic", #' nrow = 1, #' title = "AMR of Anti-UTI Drugs Per Ward", #' x.title = "Ward", #' datalabels = FALSE #' ) #' } #' } ggplot_sir <- function(data, position = NULL, x = "antibiotic", fill = "interpretation", # params = list(), facet = NULL, breaks = seq(0, 1, 0.1), limits = NULL, translate_ab = "name", combine_SI = TRUE, minimum = 30, language = get_AMR_locale(), nrow = NULL, colours = c( S = "#3CAEA3", SI = "#3CAEA3", I = "#F6D55C", IR = "#ED553B", R = "#ED553B" ), datalabels = TRUE, datalabels.size = 2.5, datalabels.colour = "grey15", title = NULL, subtitle = NULL, caption = NULL, x.title = "Antimicrobial", y.title = "Proportion", ...) { stop_ifnot_installed("ggplot2") meet_criteria(data, allow_class = "data.frame") data <- ascertain_sir_classes(data, "data") meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE) meet_criteria(x, allow_class = "character", has_length = 1) meet_criteria(fill, allow_class = "character", has_length = 1) meet_criteria(facet, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(breaks, allow_class = c("numeric", "integer")) meet_criteria(limits, allow_class = c("numeric", "integer"), has_length = 2, allow_NULL = TRUE, allow_NA = TRUE) meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE) meet_criteria(combine_SI, allow_class = "logical", has_length = 1) meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE) language <- validate_language(language) meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE) meet_criteria(colours, allow_class = c("character", "logical")) meet_criteria(datalabels, allow_class = "logical", has_length = 1) meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(datalabels.colour, allow_class = "character", has_length = 1) meet_criteria(title, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(subtitle, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(caption, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(x.title, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(y.title, allow_class = "character", has_length = 1, allow_NULL = TRUE) # we work with aes_string later on x_deparse <- deparse(substitute(x)) if (x_deparse != "x") { x <- x_deparse } if (x %like% '".*"') { x <- substr(x, 2, nchar(x) - 1) } facet_deparse <- deparse(substitute(facet)) if (facet_deparse != "facet") { facet <- facet_deparse } if (facet %like% '".*"') { facet <- substr(facet, 2, nchar(facet) - 1) } if (facet %in% c("NULL", "")) { facet <- NULL } if (is.null(position)) { position <- "fill" } p <- ggplot2::ggplot(data = data) + geom_sir( position = position, x = x, fill = fill, translate_ab = translate_ab, minimum = minimum, language = language, combine_SI = combine_SI, ... ) + theme_sir() if (fill == "interpretation") { p <- p + scale_sir_colours(colours = colours) } if (identical(position, "fill")) { # proportions, so use y scale with percentage p <- p + scale_y_percent(breaks = breaks, limits = limits) } if (datalabels == TRUE) { p <- p + labels_sir_count( position = position, x = x, translate_ab = translate_ab, minimum = minimum, language = language, combine_SI = combine_SI, datalabels.size = datalabels.size, datalabels.colour = datalabels.colour ) } if (!is.null(facet)) { p <- p + facet_sir(facet = facet, nrow = nrow) } p <- p + ggplot2::labs( title = title, subtitle = subtitle, caption = caption, x = x.title, y = y.title ) p } #' @rdname ggplot_sir #' @export geom_sir <- function(position = NULL, x = c("antibiotic", "interpretation"), fill = "interpretation", translate_ab = "name", minimum = 30, language = get_AMR_locale(), combine_SI = TRUE, ...) { x <- x[1] stop_ifnot_installed("ggplot2") stop_if(is.data.frame(position), "`position` is invalid. Did you accidentally use '%>%' instead of '+'?") meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE) meet_criteria(x, allow_class = "character", has_length = 1) meet_criteria(fill, allow_class = "character", has_length = 1) meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE) meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE) language <- validate_language(language) meet_criteria(combine_SI, allow_class = "logical", has_length = 1) y <- "value" if (missing(position) || is.null(position)) { position <- "fill" } if (identical(position, "fill")) { position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE) } # we work with aes_string later on x_deparse <- deparse(substitute(x)) if (x_deparse != "x") { x <- x_deparse } if (x %like% '".*"') { x <- substr(x, 2, nchar(x) - 1) } if (tolower(x) %in% tolower(c("ab", "abx", "antibiotics"))) { x <- "antibiotic" } else if (tolower(x) %in% tolower(c("SIR", "sir", "interpretations", "result"))) { x <- "interpretation" } ggplot2::geom_col( data = function(x) { sir_df( data = x, translate_ab = translate_ab, language = language, minimum = minimum, combine_SI = combine_SI ) }, mapping = ggplot2::aes_string(x = x, y = y, fill = fill), position = position, ... ) }