Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns TRUE for every new get_episode() index, and is thus equal to !duplicated(get_episode(...)).

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

Details

The functions get_episode() and is_new_episode() differ in this way when setting episode_days to 365:

person_iddateget_episode()is_new_episode()
A2019-01-011TRUE
A2019-03-011FALSE
A2021-01-012TRUE
B2008-01-011TRUE
B2008-01-011FALSE
C2020-01-011TRUE

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 35 39 19 14 29 40 12 13 44 38 37 39  6 44 32  2 39 21 30 12 10 18 11 15  8
#>  [26] 29 46 20 37 38 38  1 40 21 41  5 15 33  8 15 11 29 31 44 35 28 45 25 45 22
#>  [51] 35 12 24 10  4 12  1 27  9 36  8 16  7 23 21 18 45 47  5  6 36 46 43 41 34
#>  [76]  3 11 27 34 17 17 26 46 42 46 19 29 42 33 47  1 41 33  7 46 23 24 11 38 30
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
#>  [13]  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
#>  [25]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
#>  [37] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
#>  [49] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
#>  [61] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [73]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE
#>  [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [97] FALSE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 1 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <sir> <sir> <sir> <sir>
#> 1 2002-08-28 390178     57 M      Clinical B_STRPT_SLVR S     NA    NA    S    
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
#> #   FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
#> #   GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
#> #   NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
#> #   TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
#> #   AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
#> #   MUP <sir>, RIF <sir>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
  c(
    Sys.time(),
    Sys.time() + 60 * 60
  ),
  episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 100,
      replace = TRUE
    )) %>%
    group_by(patient, condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode) %>%
    arrange(patient, condition, date)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, condition [99]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 0C0688  2014-09-05 B         TRUE       
#>  2 0DBF93  2015-12-03 A         TRUE       
#>  3 116866  2011-11-07 B         TRUE       
#>  4 15D386  2004-08-01 A         TRUE       
#>  5 174209  2011-10-03 B         TRUE       
#>  6 183220  2008-11-14 C         TRUE       
#>  7 202577  2011-06-18 C         TRUE       
#>  8 2FC253  2003-11-04 B         TRUE       
#>  9 304508  2004-05-09 A         TRUE       
#> 10 314039  2008-04-28 C         TRUE       
#> # … with 90 more rows

if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    ) %>%
    arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups:   ward, patient [94]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <int> <lgl>      
#>  1 Clinical   2014-09-05 0C0688          1 TRUE       
#>  2 ICU        2015-12-03 0DBF93          1 TRUE       
#>  3 Clinical   2011-11-07 116866          1 TRUE       
#>  4 ICU        2004-08-01 15D386          1 TRUE       
#>  5 Outpatient 2011-10-03 174209          1 TRUE       
#>  6 Clinical   2008-11-14 183220          1 TRUE       
#>  7 ICU        2011-06-18 202577          1 TRUE       
#>  8 ICU        2003-11-04 2FC253          1 TRUE       
#>  9 Clinical   2004-05-09 304508          1 TRUE       
#> 10 Clinical   2008-04-28 314039          1 TRUE       
#> # … with 90 more rows

if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical           59             13            36            43
#> 2 ICU                31             10            24            27
#> 3 Outpatient          4              3             4             4

# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> [1] TRUE

# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups:   patient, mo, ward [96]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 789292  B_STRPT_GRPC Clinical   TRUE        
#>  2 534091  B_ESCHR_COLI Clinical   TRUE        
#>  3 F50462  B_STPHY_CONS ICU        TRUE        
#>  4 C89738  B_STPHY_CONS Clinical   TRUE        
#>  5 174209  B_STPHY_AURS Outpatient TRUE        
#>  6 A84726  B_STPHY_HMNS ICU        TRUE        
#>  7 9B6789  B_STPHY_HMNS ICU        TRUE        
#>  8 E19253  B_STPHY_CONS Clinical   TRUE        
#>  9 D08278  B_ESCHR_COLI ICU        TRUE        
#> 10 C34429  B_PROTS_MRBL Clinical   TRUE        
#> # … with 90 more rows
# }