Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1]  1 32  7 22 29 55 15 62 34 39 13  4 28 30 43 26 34 55 46  3 16 62 49 38 31
#>  [26] 13  1 39 52 20 48 55 10 43 60 31 14  9 29 32  8 18 52 57 48 54 62 43 49  6
#>  [51] 13 57 21 43 61 52 17  4 56 10 31 18 59  3 41 20 37  6 32  5 48 43 49 12 58
#>  [76] 63 63 49 38 44 35 10 60  9 55 63 48 58 11 43  7 61 45 32 60 62  2 58 53 24
#> [101] 40 35 16 29 29 46 13 25 25 15 45 58 30 59 44 64 57 45 14 34  3 18  4 28  1
#> [126]  2 29 61 27 46 23 40 50 61 60 41 15  3 45 44 18 55 60 37 37 28 15 47 42 41
#> [151]  8 27 26 15  7 50 33  2 63 64 23 12 41 62  8 16 62 49  9 12 22 32 10  9  3
#> [176] 51 30 36 11 57 19 37  9 34  7  2 27 17 54 19 55 35  6 53 28 17 56  4 32 45
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#>  [13] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
#>  [25] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
#>  [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [49] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
#>  [61] FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE
#>  [73]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
#>  [85] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#>  [97] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
#> [109] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
#> [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
#> [133]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#> [145] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
#> [157]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
#> [169] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
#> [181]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
#> [193] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 5 × 46
#>   date       patient   age gender ward      mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>     <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-06-07 710157     76 M      Outpatie… B_STPHY_CONS S     NA    S     NA   
#> 2 2002-06-22 FD8039     75 F      ICU       B_ESCHR_COLI R     NA    NA    NA   
#> 3 2002-07-15 C42193     84 M      ICU       B_STPHY_HMNS R     NA    R     R    
#> 4 2002-07-15 426426     67 F      ICU       B_ESCHR_COLI R     NA    NA    NA   
#> 5 2002-06-04 082413     78 M      ICU       B_STRPT_PNMN S     NA    NA    S    
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 614772  2002-02-27 A         TRUE       
#>  2 650870  2009-11-12 C         FALSE      
#>  3 82C90B  2003-09-19 A         FALSE      
#>  4 B52127  2007-06-03 A         FALSE      
#>  5 B13757  2009-02-12 C         TRUE       
#>  6 097186  2015-10-28 C         FALSE      
#>  7 C82046  2005-08-08 A         TRUE       
#>  8 D80438  2017-07-03 C         FALSE      
#>  9 09B453  2010-03-21 C         FALSE      
#> 10 5B78D5  2011-09-19 A         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [188]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical   2002-02-27 614772          1 TRUE       
#>  2 Outpatient 2009-11-12 650870          1 TRUE       
#>  3 Clinical   2003-09-19 82C90B          1 TRUE       
#>  4 ICU        2007-06-03 B52127          1 TRUE       
#>  5 Outpatient 2009-02-12 B13757          1 TRUE       
#>  6 Clinical   2015-10-28 097186          1 TRUE       
#>  7 ICU        2005-08-08 C82046          1 TRUE       
#>  8 Clinical   2017-07-03 D80438          1 TRUE       
#>  9 Clinical   2010-03-21 09B453          1 TRUE       
#> 10 Clinical   2011-09-19 5B78D5          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          122             15            53            75
#> 2 ICU                49             12            33            39
#> 3 Outpatient         17              8            13            15
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [193]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 614772  B_STPHY_HMNS Clinical   TRUE        
#>  2 650870  B_ESCHR_COLI Outpatient TRUE        
#>  3 82C90B  B_STPHY_EPDR Clinical   TRUE        
#>  4 B52127  B_ESCHR_COLI ICU        TRUE        
#>  5 B13757  B_STPHY_EPDR Outpatient TRUE        
#>  6 097186  B_STPHY_CPTS Clinical   TRUE        
#>  7 C82046  B_ESCHR_COLI ICU        TRUE        
#>  8 D80438  B_CRYNB_STRT Clinical   TRUE        
#>  9 09B453  B_STPHY_AURS Clinical   TRUE        
#> 10 5B78D5  B_STPHY_AURS Clinical   TRUE        
#> # … with 190 more rows
# }