Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 21 58 44 52 10 38 12 52 61 27 13 62 24 43 11 21 56 19 15 21 44 56 62  5 14
#>  [26] 36 10 54 22 36 46 12 24 13 59 34 48 29 55  8 26  5 14  1 25 37  7 60 15 57
#>  [51] 36 44 62  5 40 41  6 40  6 43 40 58 56 42 10 21 47  8 33 35 15 28 22 47 33
#>  [76] 51 37 33 42 41 50  8 43 31  7  7 23 60  7 51 19 20 33 61 22 46 30 18 57 21
#> [101] 49 23 51 53 13 12 17 13 40  9 35 58 31 12 30 17 61 46 45 39 28 58 18 57 27
#> [126] 30 13  1 16  7 26 28 61 57 18 16 52 31  2  3 46 59 50  6  6 58  3  4 28 21
#> [151] 48 11 16 49 54 11 27 25 27 45  3 38 31 47  3 17 28 21 55 11 29 13 20 54 32
#> [176] 53 60 25 56 10  8 26  3 50  1  7 21 13 55  4 35 45 29 32 42 62 44  2 50 41
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE
#>  [13] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
#>  [25] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
#>  [37] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
#>  [49] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
#>  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
#>  [73] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
#>  [85] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [97]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
#> [109] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
#> [121]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [133] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
#> [145] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
#> [157] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#> [169] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#> [181] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
#> [193] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 5 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-07-28 F54261     69 M      Clinical B_STPHY_CONS R     NA    S     NA   
#> 2 2002-08-19 A49852     70 M      Clinical B_ESCHR_COLI R     NA    NA    NA   
#> 3 2002-08-31 149442     80 F      ICU      B_STPHY_AURS R     NA    S     R    
#> 4 2002-07-23 F35553     51 M      ICU      B_STPHY_AURS R     NA    S     R    
#> 5 2002-07-24 F35553     51 M      ICU      B_STPHY_AURS R     NA    S     R    
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 A68B33  2007-04-14 C         FALSE      
#>  2 422833  2017-03-21 C         FALSE      
#>  3 545388  2013-07-29 B         FALSE      
#>  4 A76045  2015-10-07 C         FALSE      
#>  5 F35553  2004-09-22 C         TRUE       
#>  6 50C8DB  2011-09-01 C         FALSE      
#>  7 848254  2005-03-29 B         FALSE      
#>  8 A84726  2015-08-14 A         TRUE       
#>  9 D20588  2017-08-17 C         FALSE      
#> 10 C7C641  2008-12-27 C         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [176]
#>    ward       date       patient new_index new_logical
#>    <chr>      <date>     <chr>       <dbl> <lgl>      
#>  1 ICU        2007-04-14 A68B33          1 TRUE       
#>  2 ICU        2017-03-21 422833          1 TRUE       
#>  3 Clinical   2013-07-29 545388          1 TRUE       
#>  4 ICU        2015-10-07 A76045          1 TRUE       
#>  5 ICU        2004-09-22 F35553          4 TRUE       
#>  6 Clinical   2011-09-01 50C8DB          1 TRUE       
#>  7 ICU        2005-03-29 848254          1 TRUE       
#>  8 Clinical   2015-08-14 A84726          1 TRUE       
#>  9 ICU        2017-08-17 D20588          1 TRUE       
#> 10 Outpatient 2008-12-27 C7C641          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          101             14            51            67
#> 2 ICU                62             13            36            43
#> 3 Outpatient         13              7            11            11
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [191]
#>    patient mo           ward       flag_episode
#>    <chr>   <mo>         <chr>      <lgl>       
#>  1 A68B33  B_STPHY_AURS ICU        TRUE        
#>  2 422833  B_STPHY_EPDR ICU        TRUE        
#>  3 545388  B_ENTRC      Clinical   TRUE        
#>  4 A76045  B_ENTRC_FACM ICU        TRUE        
#>  5 F35553  B_STPHY_AURS ICU        FALSE       
#>  6 50C8DB  B_STPHY_EPDR Clinical   TRUE        
#>  7 848254  B_STPHY_EPDR ICU        TRUE        
#>  8 A84726  B_STPHY_EPDR Clinical   TRUE        
#>  9 D20588  B_STPHY_HMNS ICU        TRUE        
#> 10 C7C641  B_STPHY_CONS Outpatient TRUE        
#> # … with 190 more rows
# }