Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns se_min and se_max. See Examples for a real live example.

resistance_predict(tbl, col_ab, col_date, year_min = NULL,
  year_max = NULL, year_every = 1, minimum = 30,
  model = "binomial", I_as_R = TRUE, preserve_measurements = TRUE,
  info = TRUE)

rsi_predict(tbl, col_ab, col_date, year_min = NULL, year_max = NULL,
  year_every = 1, minimum = 30, model = "binomial", I_as_R = TRUE,
  preserve_measurements = TRUE, info = TRUE)

Arguments

tbl

a data.frame containing isolates.

col_ab

column name of tbl with antimicrobial interpretations (R, I and S)

col_date

column name of the date, will be used to calculate years if this column doesn't consist of years already

year_min

lowest year to use in the prediction model, dafaults the lowest year in col_date

year_max

highest year to use in the prediction model, defaults to 15 years after today

year_every

unit of sequence between lowest year found in the data and year_max

minimum

minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model.

model

the statistical model of choice. Valid values are "binomial" (or "binom" or "logit") or "loglin" or "linear" (or "lin").

I_as_R

treat I as R

preserve_measurements

logical to indicate whether predictions of years that are actually available in the data should be overwritten with the original data. The standard errors of those years will be NA.

info

print textual analysis with the name and summary of the model.

Value

data.frame with columns:

  • year

  • value, the same as estimated when preserve_measurements = FALSE, and a combination of observed and estimated otherwise

  • se_min, the lower bound of the standard error with a minimum of 0

  • se_max the upper bound of the standard error with a maximum of 1

  • observations, the total number of observations, i.e. S + I + R

  • observed, the original observed values

  • estimated, the estimated values, calculated by the model

See also

The portion function to calculate resistance,
lm glm

Examples

# NOT RUN {
# use it with base R:
resistance_predict(tbl = tbl[which(first_isolate == TRUE & genus == "Haemophilus"),],
                   col_ab = "amcl", col_date = "date")

# or use dplyr so you can actually read it:
library(dplyr)
tbl %>%
  filter(first_isolate == TRUE,
         genus == "Haemophilus") %>%
  resistance_predict(amcl, date)
# }
# real live example: library(dplyr) septic_patients %>% # get bacteria properties like genus and species left_join_microorganisms("mo") %>% # calculate first isolates mutate(first_isolate = first_isolate(.)) %>% # filter on first E. coli isolates filter(genus == "Escherichia", species == "coli", first_isolate == TRUE) %>% # predict resistance of cefotaxime for next years resistance_predict(col_ab = "cfot", col_date = "date", year_max = 2025, preserve_measurements = TRUE, minimum = 0)
#> NOTE: Using column `mo` as input for `col_mo`.
#> NOTE: Using column `date` as input for `col_date`.
#> NOTE: Using column `patient_id` as input for `col_patient_id`.
#> => Found 1,317 first isolates (65.9% of total)
#> #> Logistic regression model (logit) with binomial distribution #> ------------------------------------------------------------ #> #> Call: #> glm(formula = cbind(R, S) ~ year, family = binomial) #> #> Deviance Residuals: #> Min 1Q Median 3Q Max #> -1.0751 -0.4675 -0.2840 -0.1530 1.5028 #> #> Coefficients: #> Estimate Std. Error z value Pr(>|z|) #> (Intercept) -686.7518 342.1219 -2.007 0.0447 * #> year 0.3393 0.1698 1.998 0.0457 * #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> (Dispersion parameter for binomial family taken to be 1) #> #> Null deviance: 13.5547 on 15 degrees of freedom #> Residual deviance: 6.8145 on 14 degrees of freedom #> AIC: 19.128 #> #> Number of Fisher Scoring iterations: 6 #>
#> year value se_min se_max observations observed estimated #> 1 2002 0.00000000 NA NA 12 0.00000000 0.0005265096 #> 2 2003 0.00000000 NA NA 13 0.00000000 0.0007390158 #> 3 2004 0.00000000 NA NA 12 0.00000000 0.0010372031 #> 4 2005 0.00000000 NA NA 15 0.00000000 0.0014555316 #> 5 2006 0.00000000 NA NA 16 0.00000000 0.0020422369 #> 6 2007 0.00000000 NA NA 17 0.00000000 0.0028647568 #> 7 2008 0.00000000 NA NA 17 0.00000000 0.0040172166 #> 8 2009 0.00000000 NA NA 18 0.00000000 0.0056306802 #> 9 2010 0.00000000 NA NA 13 0.00000000 0.0078870391 #> 10 2011 0.04761905 NA NA 21 0.04761905 0.0110375429 #> 11 2012 0.00000000 NA NA 10 0.00000000 0.0154269569 #> 12 2013 0.00000000 NA NA 13 0.00000000 0.0215239636 #> 13 2014 0.00000000 NA NA 19 0.00000000 0.0299572977 #> 14 2015 0.14285714 NA NA 14 0.14285714 0.0415545799 #> 15 2016 0.04761905 NA NA 21 0.04761905 0.0573759332 #> 16 2017 0.05000000 NA NA 20 0.05000000 0.0787262663 #> 17 2018 0.10711851 0.03829468 0.1759423 NA NA 0.1071185079 #> 18 2019 0.14414813 0.03838570 0.2499106 NA NA 0.1441481336 #> 19 2020 0.19123682 0.03582031 0.3466533 NA NA 0.1912368226 #> 20 2021 0.24922848 0.03244999 0.4660070 NA NA 0.2492284792 #> 21 2022 0.31789357 0.03249431 0.6032928 NA NA 0.3178935725 #> 22 2023 0.39551054 0.04249603 0.7485251 NA NA 0.3955105423 #> 23 2024 0.47877663 0.06981495 0.8877383 NA NA 0.4787766284 #> 24 2025 0.56323896 0.11983506 1.0000000 NA NA 0.5632389556
# create nice plots with ggplot if (!require(ggplot2)) { data <- septic_patients %>% filter(mo == as.mo("E. coli")) %>% resistance_predict(col_ab = "amox", col_date = "date", info = FALSE, minimum = 15) ggplot(data, aes(x = year)) + geom_col(aes(y = value), fill = "grey75") + geom_errorbar(aes(ymin = se_min, ymax = se_max), colour = "grey50") + scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, 0.1), labels = paste0(seq(0, 100, 10), "%")) + labs(title = expression(paste("Forecast of amoxicillin resistance in ", italic("E. coli"))), y = "%IR", x = "Year") + theme_minimal(base_size = 13) }