# ==================================================================== # # TITLE # # Antimicrobial Resistance (AMR) Analysis # # # # SOURCE # # https://gitlab.com/msberends/AMR # # # # LICENCE # # (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) # # # # This R package is free software; you can freely use and distribute # # it for both personal and commercial purposes under the terms of the # # GNU General Public License version 2.0 (GNU GPL-2), as published by # # the Free Software Foundation. # # # # This R package was created for academic research and was publicly # # released in the hope that it will be useful, but it comes WITHOUT # # ANY WARRANTY OR LIABILITY. # # Visit our website for more info: https://msberends.gitlab.io/AMR. # # ==================================================================== # #' AMR plots with \code{ggplot2} #' #' Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}} functions. #' @param data a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}}) #' @param position position adjustment of bars, either \code{"fill"} (default when \code{fun} is \code{\link{count_df}}), \code{"stack"} (default when \code{fun} is \code{\link{portion_df}}) or \code{"dodge"} #' @param x variable to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable #' @param fill variable to categorise using the plots legend, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable #' @param breaks numeric vector of positions #' @param limits numeric vector of length two providing limits of the scale, use \code{NA} to refer to the existing minimum or maximum #' @param facet variable to split plots by, either \code{"Interpretation"} (default) or \code{"Antibiotic"} or a grouping variable #' @param fun function to transform \code{data}, either \code{\link{count_df}} (default) or \code{\link{portion_df}} #' @inheritParams portion #' @param nrow (when using \code{facet}) number of rows #' @param datalabels show datalabels using \code{labels_rsi_count}, will at default only be shown when \code{fun = count_df} #' @param datalabels.size size of the datalabels #' @param datalabels.colour colour of the datalabels #' @param ... other parameters passed on to \code{geom_rsi} #' @details At default, the names of antibiotics will be shown on the plots using \code{\link{ab_name}}. This can be set with the option \code{get_antibiotic_names} (a logical value), so change it e.g. to \code{FALSE} with \code{options(get_antibiotic_names = FALSE)}. #' #' \strong{The functions}\cr #' \code{geom_rsi} will take any variable from the data that has an \code{rsi} class (created with \code{\link{as.rsi}}) using \code{fun} (\code{\link{count_df}} at default, can also be \code{\link{portion_df}}) and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis. #' #' \code{facet_rsi} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2]{facet_wrap}}. #' #' \code{scale_y_percent} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2]{scale_continuous}}. #' #' \code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R, using \code{\link[ggplot2]{scale_brewer}}. #' #' \code{theme_rsi} is a \code{ggplot \link[ggplot2]{theme}} with minimal distraction. #' #' \code{labels_rsi_count} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2]{geom_text}} #' #' \code{ggplot_rsi} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\code{\%>\%}). See Examples. #' @rdname ggplot_rsi #' @importFrom utils installed.packages #' @export #' @inheritSection AMR Read more on our website! #' @examples #' library(dplyr) #' library(ggplot2) #' #' # get antimicrobial results for drugs against a UTI: #' ggplot(septic_patients %>% select(AMX, NIT, FOS, TMP, CIP)) + #' geom_rsi() #' #' # prettify the plot using some additional functions: #' df <- septic_patients[, c("AMX", "NIT", "FOS", "TMP", "CIP")] #' ggplot(df) + #' geom_rsi() + #' scale_y_percent() + #' scale_rsi_colours() + #' labels_rsi_count() + #' theme_rsi() #' #' # or better yet, simplify this using the wrapper function - a single command: #' septic_patients %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_rsi() #' #' # get only portions and no counts: #' septic_patients %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_rsi(fun = portion_df) #' #' # add other ggplot2 parameters as you like: #' septic_patients %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_rsi(width = 0.5, #' colour = "black", #' size = 1, #' linetype = 2, #' alpha = 0.25) #' #' # resistance of ciprofloxacine per age group #' septic_patients %>% #' mutate(first_isolate = first_isolate(.)) %>% #' filter(first_isolate == TRUE, #' mo == as.mo("E. coli")) %>% #' # `age_group` is also a function of this package: #' group_by(age_group = age_groups(age)) %>% #' select(age_group, #' CIP) %>% #' ggplot_rsi(x = "age_group") #' \donttest{ #' #' # for colourblind mode, use divergent colours from the viridis package: #' septic_patients %>% #' select(AMX, NIT, FOS, TMP, CIP) %>% #' ggplot_rsi() + scale_fill_viridis_d() #' #' #' # it also supports groups (don't forget to use the group var on `x` or `facet`): #' septic_patients %>% #' select(hospital_id, AMX, NIT, FOS, TMP, CIP) %>% #' group_by(hospital_id) %>% #' ggplot_rsi(x = hospital_id, #' facet = Antibiotic, #' nrow = 1) + #' labs(title = "AMR of Anti-UTI Drugs Per Hospital", #' x = "Hospital") #' #' # genuine analysis: check 2 most prevalent microorganisms #' septic_patients %>% #' # create new bacterial ID's, with all CoNS under the same group (Becker et al.) #' mutate(mo = as.mo(mo, Becker = TRUE)) %>% #' # filter on top three bacterial ID's #' filter(mo %in% top_freq(freq(.$mo), 3)) %>% #' # determine first isolates #' mutate(first_isolate = first_isolate(., #' col_date = "date", #' col_patient_id = "patient_id", #' col_mo = "mo")) %>% #' # filter on first isolates #' filter(first_isolate == TRUE) %>% #' # get short MO names (like "E. coli") #' mutate(mo = mo_shortname(mo, Becker = TRUE)) %>% #' # select this short name and some antiseptic drugs #' select(mo, CXM, GEN, CIP) %>% #' # group by MO #' group_by(mo) %>% #' # plot the thing, putting MOs on the facet #' ggplot_rsi(x = Antibiotic, #' facet = mo, #' translate_ab = FALSE, #' nrow = 1) + #' labs(title = "AMR of Top Three Microorganisms In Blood Culture Isolates", #' subtitle = "Only First Isolates, CoNS grouped according to Becker et al. (2014)", #' x = "Microorganisms") #' } ggplot_rsi <- function(data, position = NULL, x = "Antibiotic", fill = "Interpretation", # params = list(), facet = NULL, breaks = seq(0, 1, 0.1), limits = NULL, translate_ab = "name", combine_SI = TRUE, combine_IR = FALSE, language = get_locale(), fun = count_df, nrow = NULL, datalabels = FALSE, datalabels.size = 3, datalabels.colour = "white", ...) { stopifnot_installed_package("ggplot2") fun_name <- deparse(substitute(fun)) if (!fun_name %in% c("portion_df", "count_df")) { stop("`fun` must be portion_df or count_df") } x <- x[1] facet <- facet[1] # we work with aes_string later on x_deparse <- deparse(substitute(x)) if (x_deparse != "x") { x <- x_deparse } if (x %like% '".*"') { x <- substr(x, 2, nchar(x) - 1) } facet_deparse <- deparse(substitute(facet)) if (facet_deparse != "facet") { facet <- facet_deparse } if (facet %like% '".*"') { facet <- substr(facet, 2, nchar(facet) - 1) } if (facet %in% c("NULL", "")) { facet <- NULL } p <- ggplot2::ggplot(data = data) + geom_rsi(position = position, x = x, fill = fill, translate_ab = translate_ab, fun = fun, combine_SI = combine_SI, combine_IR = combine_IR, ...) + theme_rsi() if (fill == "Interpretation") { # set RSI colours p <- p + scale_rsi_colours() } if (is.null(position)) { position <- "fill" } if (fun_name == "portion_df" | (fun_name == "count_df" & identical(position, "fill"))) { # portions, so use y scale with percentage p <- p + scale_y_percent(breaks = breaks, limits = limits) } if (fun_name == "count_df" & datalabels == TRUE) { p <- p + labels_rsi_count(position = position, x = x, datalabels.size = datalabels.size, datalabels.colour = datalabels.colour) } if (!is.null(facet)) { p <- p + facet_rsi(facet = facet, nrow = nrow) } p } #' @rdname ggplot_rsi #' @export geom_rsi <- function(position = NULL, x = c("Antibiotic", "Interpretation"), fill = "Interpretation", translate_ab = "name", language = get_locale(), combine_SI = TRUE, combine_IR = FALSE, fun = count_df, ...) { stopifnot_installed_package("ggplot2") if (is.data.frame(position)) { stop("`position` is invalid. Did you accidentally use '%>%' instead of '+'?", call. = FALSE) } fun_name <- deparse(substitute(fun)) if (!fun_name %in% c("portion_df", "count_df", "fun")) { stop("`fun` must be portion_df or count_df") } y <- "Value" if (identical(fun, count_df)) { if (missing(position) | is.null(position)) { position <- "fill" } } else { if (missing(position) | is.null(position)) { position <- "stack" } } x <- x[1] # we work with aes_string later on x_deparse <- deparse(substitute(x)) if (x_deparse != "x") { x <- x_deparse } if (x %like% '".*"') { x <- substr(x, 2, nchar(x) - 1) } if (tolower(x) %in% tolower(c('ab', 'antibiotic', 'abx', 'antibiotics'))) { x <- "Antibiotic" } else if (tolower(x) %in% tolower(c('SIR', 'RSI', 'interpretation', 'interpretations', 'result'))) { x <- "Interpretation" } ggplot2::layer(geom = "bar", stat = "identity", position = position, mapping = ggplot2::aes_string(x = x, y = y, fill = fill), params = list(...), data = function(x) { fun(data = x, translate_ab = translate_ab, language = language, combine_SI = combine_SI, combine_IR = combine_IR) }) } #' @rdname ggplot_rsi #' @export facet_rsi <- function(facet = c("Interpretation", "Antibiotic"), nrow = NULL) { stopifnot_installed_package("ggplot2") facet <- facet[1] # we work with aes_string later on facet_deparse <- deparse(substitute(facet)) if (facet_deparse != "facet") { facet <- facet_deparse } if (facet %like% '".*"') { facet <- substr(facet, 2, nchar(facet) - 1) } if (tolower(facet) %in% tolower(c('SIR', 'RSI', 'interpretation', 'interpretations', 'result'))) { facet <- "Interpretation" } else if (tolower(facet) %in% tolower(c('ab', 'antibiotic', 'abx', 'antibiotics'))) { facet <- "Antibiotic" } ggplot2::facet_wrap(facets = facet, scales = "free_x", nrow = nrow) } #' @rdname ggplot_rsi #' @export scale_y_percent <- function(breaks = seq(0, 1, 0.1), limits = NULL) { stopifnot_installed_package("ggplot2") if (all(breaks[breaks != 0] > 1)) { breaks <- breaks / 100 } ggplot2::scale_y_continuous(breaks = breaks, labels = percent(breaks), limits = limits) } #' @rdname ggplot_rsi #' @export scale_rsi_colours <- function() { stopifnot_installed_package("ggplot2") #ggplot2::scale_fill_brewer(palette = "RdYlGn") #ggplot2::scale_fill_manual(values = c("#b22222", "#ae9c20", "#7cfc00")) # mixed using https://www.colorhexa.com/b22222 # and https://www.w3schools.com/colors/colors_mixer.asp ggplot2::scale_fill_manual(values = c(S = "#22b222", SI = "#22b222", I = "#548022", IR = "#b22222", R = "#b22222")) } #' @rdname ggplot_rsi #' @export theme_rsi <- function() { stopifnot_installed_package("ggplot2") ggplot2::theme_minimal() + ggplot2::theme(panel.grid.major.x = ggplot2::element_blank(), panel.grid.minor = ggplot2::element_blank(), panel.grid.major.y = ggplot2::element_line(colour = "grey75")) } #' @rdname ggplot_rsi #' @export labels_rsi_count <- function(position = NULL, x = "Antibiotic", datalabels.size = 3, datalabels.colour = "white") { stopifnot_installed_package("ggplot2") if (is.null(position)) { position <- "fill" } if (identical(position, "fill")) { position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE) } ggplot2::geom_text(mapping = ggplot2::aes_string(label = "lbl", x = x, y = "Value"), position = position, data = getlbls, inherit.aes = FALSE, size = datalabels.size, colour = datalabels.colour) } #' @importFrom dplyr %>% group_by mutate getlbls <- function(data) { data %>% count_df() %>% group_by(Antibiotic) %>% mutate(lbl = paste0(percent(Value / sum(Value, na.rm = TRUE), force_zero = TRUE), " (n=", Value, ")")) %>% mutate(lbl = ifelse(lbl == "0.0% (n=0)", "", lbl)) }