Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 21  6 27 50 51 28 39 19 14 34 23 43 60 21  1 44 39 11  2 30 34 24  1 46 16
#>  [26] 21 27 50  8 49 11 54  5 24 26 21 38 11  8 56  1 51 26 13 36 18 59 15 37  8
#>  [51] 63 39 37 52  1 60 17  4 53 42 62 42 47  6 30 15 25 61 44 24 11 43 60 65 59
#>  [76]  4 14  3  3 21 53 18 62 10 38  7 53 23 65 30 34  7 31 28 28 54 43 40 49 49
#> [101] 21 64 64 63 39 44 46 56 25 63 21 37  2 49 44 13  4  1  1  6 56  9 35 11 14
#> [126]  4 32 13 23 63 55  7 17 54 20  4  9 17 12  1 65  2 60 31 25  7 35 20 57 48
#> [151] 45 13 15 42 17 60 56 17  3 34 22 56 55 23 58 48 28 39 29 44 27 61 15 25 56
#> [176]  2  7 40  1 32 62  9 62 33 12 56  9 61 41 43 13 11 12  2 39 11  3 17 53 24
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
#>  [13]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
#>  [25]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
#>  [37]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
#>  [49]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE
#>  [61] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#>  [73] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
#>  [85] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
#>  [97] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
#> [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [121] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
#> [133] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
#> [145]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE
#> [157] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
#> [169]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
#> [181] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE
#> [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 4 × 46
#>   date       patient   age gender ward      mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>     <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-07-28 F54261     69 M      Clinical  B_STPHY_CONS R     NA    S     NA   
#> 2 2002-07-16 241328     78 M      Outpatie… B_STPHY_CONS R     NA    S     R    
#> 3 2002-08-19 A49852     70 M      Clinical  B_ESCHR_COLI R     NA    NA    NA   
#> 4 2002-07-21 955940     82 F      Clinical  B_PSDMN_AERG R     NA    NA    R    
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 0E2483  2007-05-29 C         FALSE      
#>  2 114570  2003-04-08 A         TRUE       
#>  3 189795  2008-10-19 A         FALSE      
#>  4 C48417  2014-02-07 A         FALSE      
#>  5 658640  2014-05-30 A         FALSE      
#>  6 B65162  2008-12-29 B         TRUE       
#>  7 E53320  2011-07-04 A         FALSE      
#>  8 418311  2006-11-10 B         TRUE       
#>  9 2B1C03  2005-10-23 C         FALSE      
#> 10 192353  2010-04-05 B         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [182]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical 2007-05-29 0E2483          1 TRUE       
#>  2 ICU      2003-04-08 114570          1 TRUE       
#>  3 Clinical 2008-10-19 189795          1 TRUE       
#>  4 Clinical 2014-02-07 C48417          1 TRUE       
#>  5 Clinical 2014-05-30 658640          1 TRUE       
#>  6 Clinical 2008-12-29 B65162          1 TRUE       
#>  7 Clinical 2011-07-04 E53320          1 TRUE       
#>  8 ICU      2006-11-10 418311          1 TRUE       
#>  9 Clinical 2005-10-23 2B1C03          1 TRUE       
#> 10 Clinical 2010-04-05 192353          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          113             14            49            70
#> 2 ICU                58             13            34            42
#> 3 Outpatient         11              5            11            11
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] TRUE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [193]
#>    patient mo                ward     flag_episode
#>    <chr>   <mo>              <chr>    <lgl>       
#>  1 0E2483  B_ESCHR_COLI      Clinical TRUE        
#>  2 114570  B_STRPT_PYGN      ICU      TRUE        
#>  3 189795  B_AERCC_URNQ      Clinical TRUE        
#>  4 C48417  B_LCTBC_DLBR_LCTS Clinical TRUE        
#>  5 658640  B_STPHY_AURS      Clinical TRUE        
#>  6 B65162  B_STRPT_PNMN      Clinical TRUE        
#>  7 E53320  B_ESCHR_COLI      Clinical TRUE        
#>  8 418311  B_STPHY_CONS      ICU      TRUE        
#>  9 2B1C03  B_STPHY_CONS      Clinical TRUE        
#> 10 192353  B_STRPT_PNMN      Clinical TRUE        
#> # … with 190 more rows
# }