Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 47 45  6  9 11 46 58 56 41  8  8 12 56  4  3 54 46 19 57 60 31 23 20 29  5
#>  [26]  3 44  5  1 28 40 49  6 37 51 23 53 53 41 34 34 14 21 55 32 39 57 15  4 28
#>  [51] 15  9 56 42 28 13 55 36 27 34 34 31 60 59 22 51 36 19 30 41 12 60 21  7  2
#>  [76] 41 41 51 50  2  6 16  7 25 52  8 59 30 51 50 40 29 15 22 13 27 53 33 51 49
#> [101] 38 35 16 19  1  8 18  9 43 56 10 37 35 36  5 14 55 56 37  1 26 30 58 29 49
#> [126] 49 43 53 51 27 55 44 22 60 60 51 23 33 26 48 20 17 35 42 35 19 19 19 21 52
#> [151] 32 46 35 45 55 27 13 33 19 57 57 57 26 15 11 10 33 46 25 12 55 45 18 41 58
#> [176] 42 17 31 29 58 55 49 53 51 24 14 35 16 11 58 25 51 15 15 22 16 51 46 37 53
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
#>  [13] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#>  [25] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
#>  [37] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
#>  [49]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [61] FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
#>  [73]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
#>  [85]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
#>  [97] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
#> [109]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
#> [121] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
#> [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
#> [145]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [157] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
#> [169] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [181] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [193] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#>   date       patient   age gender ward     mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>    <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-08-19 A49852     70 M      Clinical B_ESCHR_COLI R     NA    NA    NA   
#> 2 2002-07-21 955940     82 F      Clinical B_PSDMN_AERG R     NA    NA    R    
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 8F77B2  2014-02-20 B         FALSE      
#>  2 545388  2013-07-29 B         FALSE      
#>  3 6BC362  2003-04-25 B         FALSE      
#>  4 C58921  2004-01-01 C         TRUE       
#>  5 4B6270  2004-07-01 A         FALSE      
#>  6 A97263  2013-11-23 C         TRUE       
#>  7 871020  2017-07-20 A         FALSE      
#>  8 976997  2017-03-02 C         FALSE      
#>  9 223705  2012-07-20 A         FALSE      
#> 10 739C43  2003-09-26 A         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [184]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical 2014-02-20 8F77B2          1 TRUE       
#>  2 Clinical 2013-07-29 545388          1 TRUE       
#>  3 ICU      2003-04-25 6BC362          1 TRUE       
#>  4 Clinical 2004-01-01 C58921          1 TRUE       
#>  5 Clinical 2004-07-01 4B6270          1 TRUE       
#>  6 Clinical 2013-11-23 A97263          1 TRUE       
#>  7 Clinical 2017-07-20 871020          1 TRUE       
#>  8 Clinical 2017-03-02 976997          1 TRUE       
#>  9 Clinical 2012-07-20 223705          1 TRUE       
#> 10 Clinical 2003-09-26 739C43          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          123             15            52            74
#> 2 ICU                49             13            34            41
#> 3 Outpatient         12              7            12            12
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] TRUE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [193]
#>    patient mo            ward     flag_episode
#>    <chr>   <mo>          <chr>    <lgl>       
#>  1 8F77B2  B_STPHY_EPDR  Clinical TRUE        
#>  2 545388  B_ENTRC       Clinical TRUE        
#>  3 6BC362  B_STPHY_CONS  ICU      TRUE        
#>  4 C58921  B_ESCHR_COLI  Clinical TRUE        
#>  5 4B6270  B_PSDMN_AERG  Clinical TRUE        
#>  6 A97263  B_KLBSL_PNMN  Clinical TRUE        
#>  7 871020  B_STPHY_EPDR  Clinical TRUE        
#>  8 976997  B_STRPT_PYGN  Clinical TRUE        
#>  9 223705  B_ENTRBC_CLOC Clinical TRUE        
#> 10 739C43  B_ESCHR_COLI  Clinical TRUE        
#> # … with 190 more rows
# }