Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60) # indices
#>   [1] 10 47 31 55 58 16 64 14 50 14 64 21 49 13 25 53 66 26 22 63 59 25 57 49 27
#>  [26] 13 23 17 10  6 58 12 63 18 55 65 33 36 38 13 50 56  2  5 66 10 17  9 45 35
#>  [51] 68 45 47  3 43 42 36 60  1 20 43 19 41 33  8 37 67 25 63 29 24 66 40 66 57
#>  [76] 60 35 50  3  8 66 64  3 51 63 58 58 58 36 14 23 45  8 51  2  2 35 67 36 32
#> [101]  6 12 29 19 11 34 68 61 28 41 28 20 45 44  1 47 41 10 61 55  4 15 67 40  8
#> [126] 58 12 51 58 59 40 37 39 54 11 65 11 19  5  7 45 48 42 14 68 15 22 19 60 19
#> [151] 58 30 31 49  3 10 17 52 63 29 63 62 10 22  4 33 46 23 26 43 56  7 21 12  7
#> [176] 36 45 34  1 53 24 57 14 54 45 61  8 60 11 12 14 27 33 65 36 21  1 24 53 66
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE
#>  [13] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE
#>  [25]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
#>  [37]  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
#>  [49] FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE
#>  [61] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
#>  [73] FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [85] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
#>  [97] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
#> [109] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
#> [121] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [133]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
#> [145] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
#> [157] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
#> [169] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
#> [181] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
#> [193] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 4 × 46
#>   date       patient   age gender ward      mo           PEN   OXA   FLC   AMX  
#>   <date>     <chr>   <dbl> <chr>  <chr>     <mo>         <rsi> <rsi> <rsi> <rsi>
#> 1 2002-06-23 798871     82 M      Clinical  B_ENTRC_FCLS NA    NA    NA    NA   
#> 2 2002-07-16 241328     78 M      Outpatie… B_STPHY_CONS R     NA    S     R    
#> 3 2002-08-14 785317     51 F      ICU       B_ESCHR_COLI R     NA    NA    NA   
#> 4 2002-07-15 426426     67 F      ICU       B_ESCHR_COLI R     NA    NA    NA   
#> # … with 36 more variables: AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>,
#> #   FEP <rsi>, CXM <rsi>, FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>,
#> #   GEN <rsi>, TOB <rsi>, AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>,
#> #   NIT <rsi>, FOS <rsi>, LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>,
#> #   TEC <rsi>, TCY <rsi>, TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>,
#> #   AZM <rsi>, IPM <rsi>, MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>,
#> #   MUP <rsi>, RIF <rsi>

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(
  Sys.time(),
  Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(
      x = c("A", "B", "C"),
      size = 200,
      replace = TRUE
    )) %>%
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient, date, condition, new_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   condition [3]
#>    patient date       condition new_episode
#>    <chr>   <date>     <chr>     <lgl>      
#>  1 89F578  2004-02-28 B         FALSE      
#>  2 175532  2012-10-11 B         FALSE      
#>  3 380628  2009-01-18 B         FALSE      
#>  4 4F9406  2015-01-23 B         FALSE      
#>  5 097186  2015-10-28 A         FALSE      
#>  6 FB50D6  2005-04-24 B         TRUE       
#>  7 716939  2017-01-05 B         TRUE       
#>  8 400169  2004-12-24 C         FALSE      
#>  9 512FFD  2013-06-19 C         FALSE      
#> 10 B27238  2004-12-24 C         FALSE      
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward, patient) %>%
    transmute(date,
      patient,
      new_index = get_episode(date, 60),
      new_logical = is_new_episode(date, 60)
    )
}
#> # A tibble: 200 × 5
#> # Groups:   ward, patient [188]
#>    ward     date       patient new_index new_logical
#>    <chr>    <date>     <chr>       <dbl> <lgl>      
#>  1 Clinical 2004-02-28 89F578          1 TRUE       
#>  2 Clinical 2012-10-11 175532          1 TRUE       
#>  3 Clinical 2009-01-18 380628          1 TRUE       
#>  4 Clinical 2015-01-23 4F9406          1 TRUE       
#>  5 Clinical 2015-10-28 097186          1 TRUE       
#>  6 ICU      2005-04-24 FB50D6          1 TRUE       
#>  7 ICU      2017-01-05 716939          1 TRUE       
#>  8 ICU      2004-12-24 400169          1 TRUE       
#>  9 Clinical 2013-06-19 512FFD          1 TRUE       
#> 10 Clinical 2004-12-24 B27238          1 TRUE       
#> # … with 190 more rows
if (require("dplyr")) {
  df %>%
    group_by(ward) %>%
    summarise(
      n_patients = n_distinct(patient),
      n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
      n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
      n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
    )
}
#> # A tibble: 3 × 5
#>   ward       n_patients n_episodes_365 n_episodes_60 n_episodes_30
#>   <chr>           <int>          <int>         <int>         <int>
#> 1 Clinical          124             15            57            80
#> 2 ICU                57             13            34            43
#> 3 Outpatient          7              6             7             7
if (require("dplyr")) {

  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(
      include_unknown = TRUE,
      method = "episode-based"
    )

  y <- df %>%
    group_by(patient, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
}
#> Including isolates from ICU.
#> [1] FALSE
if (require("dplyr")) {

  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient, mo, ward) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> # A tibble: 200 × 4
#> # Groups:   patient, mo, ward [195]
#>    patient mo           ward     flag_episode
#>    <chr>   <mo>         <chr>    <lgl>       
#>  1 89F578  B_STPHY_CONS Clinical TRUE        
#>  2 175532  B_ESCHR_COLI Clinical TRUE        
#>  3 380628  B_ESCHR_COLI Clinical TRUE        
#>  4 4F9406  B_KLBSL_PNMN Clinical TRUE        
#>  5 097186  B_STPHY_EPDR Clinical TRUE        
#>  6 FB50D6  B_STRPT_MITS ICU      TRUE        
#>  7 716939  B_STPHY_HMNS ICU      TRUE        
#>  8 400169  B_STPHY_EPDR ICU      TRUE        
#>  9 512FFD  B_STPHY_HMNS Clinical TRUE        
#> 10 B27238  B_STRPT_MITS Clinical TRUE        
#> # … with 190 more rows
# }